Almansi-Hamel
Conspire.AlmansiHamel
— TypeThe Almansi-Hamel elastic constitutive model.
Parameters
- The bulk modulus $\kappa$.
- The shear modulus $\mu$.
External variables
- The deformation gradient $\mathbf{F}$.
Internal variables
- None.
Notes
- The Almansi-Hamel strain measure is given by $\mathbf{e}=\tfrac{1}{2}(\mathbf{1}-\mathbf{B}^{-1})$.
Methods
Conspire.cauchy_stress
— Methodcauchy_stress(model::AlmansiHamel, F) -> Matrix{Float64}
\[\boldsymbol{\sigma}(\mathbf{F}) = \frac{2\mu}{J}\,\mathbf{e}' + \frac{\kappa}{J}\,\mathrm{tr}(\mathbf{e})\mathbf{1}\]
Conspire.cauchy_tangent_stiffness
— Methodcauchy_tangent_stiffness(
model::AlmansiHamel,
F
) -> Array{Float64, 4}
\[\mathcal{T}_{ijkL}(\mathbf{F}) = \frac{\mu}{J}\left[B_{jk}^{-1}F_{iL}^{-T} + B_{ik}^{-1}F_{jL}^{-T} - \frac{2}{3}\,\delta_{ij}B_{km}^{-1}F_{mL}^{-T} - 2e_{ij}'F_{kL}^{-T}\right] + \frac{\kappa}{J}\left[\delta_{ij}B_{km}^{-1}F_{mL}^{-T} - \mathrm{tr}(\mathbf{e})\delta_{ij}F_{kL}^{-T}\right]\]
Conspire.first_piola_kirchhoff_stress
— Methodfirst_piola_kirchhoff_stress(
model::AlmansiHamel,
F
) -> Matrix{Float64}
Conspire.first_piola_kirchhoff_tangent_stiffness
— Methodfirst_piola_kirchhoff_tangent_stiffness(
model::AlmansiHamel,
F
) -> Array{Float64, 4}
Conspire.second_piola_kirchhoff_stress
— Methodsecond_piola_kirchhoff_stress(
model::AlmansiHamel,
F
) -> Matrix{Float64}
Conspire.second_piola_kirchhoff_tangent_stiffness
— Methodsecond_piola_kirchhoff_tangent_stiffness(
model::AlmansiHamel,
F
) -> Array{Float64, 4}