Mooney-Rivlin
Conspire.MooneyRivlin
— TypeThe Mooney-Rivlin hyperelastic constitutive model.[1]<sup>,</sup>[2]
Parameters
- The bulk modulus $\kappa$.
- The shear modulus $\mu$.
- The extra modulus $\mu_m$.
External variables
- The deformation gradient $\mathbf{F}$.
Internal variables
- None.
Notes
- The Mooney-Rivlin model reduces to the Neo-Hookean model model when $\mu_m\to 0$.
Methods
Conspire.cauchy_stress
— Methodcauchy_stress(model::MooneyRivlin, F) -> Matrix{Float64}
\[\boldsymbol{\sigma}(\mathbf{F}) = \frac{\mu - \mu_m}{J}\, {\mathbf{B}^* }' - \frac{\mu_m}{J}\left(\mathbf{B}^{* -1}\right)' + \frac{\kappa}{2}\left(J - \frac{1}{J}\right)\mathbf{1}\]
Conspire.cauchy_tangent_stiffness
— Methodcauchy_tangent_stiffness(
model::MooneyRivlin,
F
) -> Array{Float64, 4}
\[\mathcal{T}_{ijkL}(\mathbf{F}) =\, \frac{\mu-\mu_m}{J^{5/3}}\left(\delta_{ik}F_{jL} + \delta_{jk}F_{iL} - \frac{2}{3}\,\delta_{ij}F_{kL}- \frac{5}{3} \, B_{ij}'F_{kL}^{-T} \right)+ \frac{\kappa}{2} \left(J + \frac{1}{J}\right)\delta_{ij}F_{kL}^{-T}- \frac{\mu_m}{J}\left[ \frac{2}{3}\,B_{ij}^{* -1}F_{kL}^{-T} - B_{ik}^{* -1}F_{jL}^{-T} - B_{ik}^{* -1}F_{iL}^{-T} + \frac{2}{3}\,\delta_{ij}\left(B_{km}^{* -1}\right)'F_{mL}^{-T} - \left(B_{ij}^{* -1}\right)'F_{kL}^{-T} \right]\]
Conspire.first_piola_kirchhoff_stress
— Methodfirst_piola_kirchhoff_stress(
model::MooneyRivlin,
F
) -> Matrix{Float64}
Conspire.first_piola_kirchhoff_tangent_stiffness
— Methodfirst_piola_kirchhoff_tangent_stiffness(
model::MooneyRivlin,
F
) -> Array{Float64, 4}
Conspire.second_piola_kirchhoff_stress
— Methodsecond_piola_kirchhoff_stress(
model::MooneyRivlin,
F
) -> Matrix{Float64}
Conspire.second_piola_kirchhoff_tangent_stiffness
— Methodsecond_piola_kirchhoff_tangent_stiffness(
model::MooneyRivlin,
F
) -> Array{Float64, 4}
Conspire.helmholtz_free_energy_density
— Methodhelmholtz_free_energy_density(
model::MooneyRivlin,
F
) -> Float64
\[a(\mathbf{F}) = \frac{\mu - \mu_m}{2}\left[\mathrm{tr}(\mathbf{B}^* ) - 3\right] + \frac{\mu_m}{2}\left[I_2(\mathbf{B}^*) - 3\right] + \frac{\kappa}{2}\left[\frac{1}{2}\left(J^2 - 1\right) - \ln J\right]\]
- 1M. Mooney, J. Appl. Phys. 11, 582 (1940).
- 2R.S. Rivlin, Philos. Trans. R. Soc. London, Ser. A 241, 379 (1948).