Neo-Hookean
Conspire.NeoHookean
— TypeThe Neo-Hookean hyperelastic constitutive model.[1]
Parameters
- The bulk modulus $\kappa$.
- The shear modulus $\mu$.
External variables
- The deformation gradient $\mathbf{F}$.
Internal variables
- None.
Methods
Conspire.cauchy_stress
— Methodcauchy_stress(model::NeoHookean, F) -> Matrix{Float64}
\[\boldsymbol{\sigma}(\mathbf{F}) = \frac{\mu}{J}\,{\mathbf{B}^*}' + \frac{\kappa}{2}\left(J - \frac{1}{J}\right)\mathbf{1}\]
Conspire.cauchy_tangent_stiffness
— Methodcauchy_tangent_stiffness(
model::NeoHookean,
F
) -> Array{Float64, 4}
\[\mathcal{T}_{ijkL}(\mathbf{F}) = \frac{\mu}{J^{5/3}}\left(\delta_{ik}F_{jL} + \delta_{jk}F_{iL} - \frac{2}{3}\,\delta_{ij}F_{kL} - \frac{5}{3} \, B_{ij}'F_{kL}^{-T} \right) + \frac{\kappa}{2} \left(J + \frac{1}{J}\right)\delta_{ij}F_{kL}^{-T}\]
Conspire.first_piola_kirchhoff_stress
— Methodfirst_piola_kirchhoff_stress(
model::NeoHookean,
F
) -> Matrix{Float64}
Conspire.first_piola_kirchhoff_tangent_stiffness
— Methodfirst_piola_kirchhoff_tangent_stiffness(
model::NeoHookean,
F
) -> Array{Float64, 4}
Conspire.second_piola_kirchhoff_stress
— Methodsecond_piola_kirchhoff_stress(
model::NeoHookean,
F
) -> Matrix{Float64}
Conspire.second_piola_kirchhoff_tangent_stiffness
— Methodsecond_piola_kirchhoff_tangent_stiffness(
model::NeoHookean,
F
) -> Array{Float64, 4}
Conspire.helmholtz_free_energy_density
— Methodhelmholtz_free_energy_density(
model::NeoHookean,
F
) -> Float64
\[a(\mathbf{F}) = \frac{\mu}{2}\left[\mathrm{tr}(\mathbf{B}^*) - 3\right] + \frac{\kappa}{2}\left[\frac{1}{2}\left(J^2 - 1\right) - \ln J\right]\]
- 1R.S. Rivlin, Philos. Trans. R. Soc. London, Ser. A 240, 459 (1948).