Neo-Hookean

Conspire.NeoHookeanType

The Neo-Hookean hyperelastic constitutive model.[1]

Parameters

  • The bulk modulus $\kappa$.
  • The shear modulus $\mu$.

External variables

  • The deformation gradient $\mathbf{F}$.

Internal variables

  • None.
source

Methods

Conspire.cauchy_stressMethod
cauchy_stress(model::NeoHookean, F) -> Matrix{Float64}

\[\boldsymbol{\sigma}(\mathbf{F}) = \frac{\mu}{J}\,{\mathbf{B}^*}' + \frac{\kappa}{2}\left(J - \frac{1}{J}\right)\mathbf{1}\]

source
Conspire.cauchy_tangent_stiffnessMethod
cauchy_tangent_stiffness(
    model::NeoHookean,
    F
) -> Array{Float64, 4}

\[\mathcal{T}_{ijkL}(\mathbf{F}) = \frac{\mu}{J^{5/3}}\left(\delta_{ik}F_{jL} + \delta_{jk}F_{iL} - \frac{2}{3}\,\delta_{ij}F_{kL} - \frac{5}{3} \, B_{ij}'F_{kL}^{-T} \right) + \frac{\kappa}{2} \left(J + \frac{1}{J}\right)\delta_{ij}F_{kL}^{-T}\]

source
Conspire.helmholtz_free_energy_densityMethod
helmholtz_free_energy_density(
    model::NeoHookean,
    F
) -> Float64

\[a(\mathbf{F}) = \frac{\mu}{2}\left[\mathrm{tr}(\mathbf{B}^*) - 3\right] + \frac{\kappa}{2}\left[\frac{1}{2}\left(J^2 - 1\right) - \ln J\right]\]

source