Saint Venant-Kirchhoff
Conspire.SaintVenantKirchhoff
— TypeThe Saint Venant-Kirchhoff hyperelastic constitutive model.
Parameters
- The bulk modulus $\kappa$.
- The shear modulus $\mu$.
External variables
- The deformation gradient $\mathbf{F}$.
Internal variables
- None.
Notes
- The Green-Saint Venant strain measure is given by $\mathbf{E}=\tfrac{1}{2}(\mathbf{C}-\mathbf{1})$.
Methods
Conspire.cauchy_stress
— Methodcauchy_stress(
model::SaintVenantKirchhoff,
F
) -> Matrix{Float64}
Conspire.cauchy_tangent_stiffness
— Methodcauchy_tangent_stiffness(
model::SaintVenantKirchhoff,
F
) -> Array{Float64, 4}
Conspire.first_piola_kirchhoff_stress
— Methodfirst_piola_kirchhoff_stress(
model::SaintVenantKirchhoff,
F
) -> Matrix{Float64}
Conspire.first_piola_kirchhoff_tangent_stiffness
— Methodfirst_piola_kirchhoff_tangent_stiffness(
model::SaintVenantKirchhoff,
F
) -> Array{Float64, 4}
Conspire.second_piola_kirchhoff_stress
— Methodsecond_piola_kirchhoff_stress(
model::SaintVenantKirchhoff,
F
) -> Matrix{Float64}
\[\mathbf{S}(\mathbf{F}) = 2\mu\mathbf{E}' + \kappa\,\mathrm{tr}(\mathbf{E})\mathbf{1}\]
Conspire.second_piola_kirchhoff_tangent_stiffness
— Methodsecond_piola_kirchhoff_tangent_stiffness(
model::SaintVenantKirchhoff,
F
) -> Array{Float64, 4}
\[\mathcal{G}_{IJkL}(\mathbf{F}) = \mu\,\delta_{JL}F_{kI} + \mu\,\delta_{IL}F_{kJ} + \left(\kappa - \frac{2}{3}\,\mu\right)\delta_{IJ}F_{kL}\]
Conspire.helmholtz_free_energy_density
— Methodhelmholtz_free_energy_density(
model::SaintVenantKirchhoff,
F
) -> Float64
\[a(\mathbf{F}) = \mu\,\mathrm{tr}(\mathbf{E}^2) + \frac{1}{2}\left(\kappa - \frac{2}{3}\,\mu\right)\mathrm{tr}(\mathbf{E})^2\]