Saint Venant-Kirchhoff

Conspire.SaintVenantKirchhoffType

The Saint Venant-Kirchhoff hyperelastic constitutive model.

Parameters

  • The bulk modulus $\kappa$.
  • The shear modulus $\mu$.

External variables

  • The deformation gradient $\mathbf{F}$.

Internal variables

  • None.

Notes

  • The Green-Saint Venant strain measure is given by $\mathbf{E}=\tfrac{1}{2}(\mathbf{C}-\mathbf{1})$.
source

Methods

Conspire.second_piola_kirchhoff_stressMethod
second_piola_kirchhoff_stress(
    model::SaintVenantKirchhoff,
    F
) -> Matrix{Float64}

\[\mathbf{S}(\mathbf{F}) = 2\mu\mathbf{E}' + \kappa\,\mathrm{tr}(\mathbf{E})\mathbf{1}\]

source
Conspire.second_piola_kirchhoff_tangent_stiffnessMethod
second_piola_kirchhoff_tangent_stiffness(
    model::SaintVenantKirchhoff,
    F
) -> Array{Float64, 4}

\[\mathcal{G}_{IJkL}(\mathbf{F}) = \mu\,\delta_{JL}F_{kI} + \mu\,\delta_{IL}F_{kJ} + \left(\kappa - \frac{2}{3}\,\mu\right)\delta_{IJ}F_{kL}\]

source
Conspire.helmholtz_free_energy_densityMethod
helmholtz_free_energy_density(
    model::SaintVenantKirchhoff,
    F
) -> Float64

\[a(\mathbf{F}) = \mu\,\mathrm{tr}(\mathbf{E}^2) + \frac{1}{2}\left(\kappa - \frac{2}{3}\,\mu\right)\mathrm{tr}(\mathbf{E})^2\]

source