conspire/constitutive/solid/elastic/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
//! Elastic constitutive models.
//!
//! ---
//!
#![doc = include_str!("doc.md")]

#[cfg(test)]
pub mod test;

mod almansi_hamel;

pub use almansi_hamel::AlmansiHamel;

use super::*;
use crate::math::optimize::{NewtonRaphson, SecondOrder};

/// Required methods for elastic constitutive models.
pub trait Elastic<'a>
where
    Self: Solid<'a>,
{
    /// Calculates and returns the Cauchy stress.
    ///
    /// ```math
    /// \boldsymbol{\sigma} = J^{-1}\mathbf{P}\cdot\mathbf{F}^T
    /// ```
    fn cauchy_stress(
        &self,
        deformation_gradient: &DeformationGradient,
    ) -> Result<CauchyStress, ConstitutiveError> {
        Ok(deformation_gradient
            * self.second_piola_kirchhoff_stress(deformation_gradient)?
            * deformation_gradient.transpose()
            / deformation_gradient.determinant())
    }
    /// Calculates and returns the tangent stiffness associated with the Cauchy stress.
    ///
    /// ```math
    /// \mathcal{T}_{ijkL} = \frac{\partial\sigma_{ij}}{\partial F_{kL}} = J^{-1} \mathcal{G}_{MNkL} F_{iM} F_{jN} - \sigma_{ij} F_{kL}^{-T} + \left(\delta_{jk}\sigma_{is} + \delta_{ik}\sigma_{js}\right)F_{sL}^{-T}
    /// ```
    fn cauchy_tangent_stiffness(
        &self,
        deformation_gradient: &DeformationGradient,
    ) -> Result<CauchyTangentStiffness, ConstitutiveError> {
        let deformation_gradient_inverse_transpose = deformation_gradient.inverse_transpose();
        let cauchy_stress = self.cauchy_stress(deformation_gradient)?;
        let some_stress = &cauchy_stress * &deformation_gradient_inverse_transpose;
        Ok(self
            .second_piola_kirchhoff_tangent_stiffness(deformation_gradient)?
            .contract_first_second_indices_with_second_indices_of(
                deformation_gradient,
                deformation_gradient,
            )
            / deformation_gradient.determinant()
            - CauchyTangentStiffness::dyad_ij_kl(
                &cauchy_stress,
                &deformation_gradient_inverse_transpose,
            )
            + CauchyTangentStiffness::dyad_il_kj(&some_stress, &IDENTITY)
            + CauchyTangentStiffness::dyad_ik_jl(&IDENTITY, &some_stress))
    }
    /// Calculates and returns the first Piola-Kirchhoff stress.
    ///
    /// ```math
    /// \mathbf{P} = J\boldsymbol{\sigma}\cdot\mathbf{F}^{-T}
    /// ```
    fn first_piola_kirchhoff_stress(
        &self,
        deformation_gradient: &DeformationGradient,
    ) -> Result<FirstPiolaKirchhoffStress, ConstitutiveError> {
        Ok(self.cauchy_stress(deformation_gradient)?
            * deformation_gradient.inverse_transpose()
            * deformation_gradient.determinant())
    }
    /// Calculates and returns the tangent stiffness associated with the first Piola-Kirchhoff stress.
    ///
    /// ```math
    /// \mathcal{C}_{iJkL} = \frac{\partial P_{iJ}}{\partial F_{kL}} = J \mathcal{T}_{iskL} F_{sJ}^{-T} + P_{iJ} F_{kL}^{-T} - P_{iL} F_{kJ}^{-T}
    /// ```
    fn first_piola_kirchhoff_tangent_stiffness(
        &self,
        deformation_gradient: &DeformationGradient,
    ) -> Result<FirstPiolaKirchhoffTangentStiffness, ConstitutiveError> {
        let deformation_gradient_inverse_transpose = deformation_gradient.inverse_transpose();
        let first_piola_kirchhoff_stress =
            self.first_piola_kirchhoff_stress(deformation_gradient)?;
        Ok(self
            .cauchy_tangent_stiffness(deformation_gradient)?
            .contract_second_index_with_first_index_of(&deformation_gradient_inverse_transpose)
            * deformation_gradient.determinant()
            + FirstPiolaKirchhoffTangentStiffness::dyad_ij_kl(
                &first_piola_kirchhoff_stress,
                &deformation_gradient_inverse_transpose,
            )
            - FirstPiolaKirchhoffTangentStiffness::dyad_il_kj(
                &first_piola_kirchhoff_stress,
                &deformation_gradient_inverse_transpose,
            ))
    }
    /// Calculates and returns the second Piola-Kirchhoff stress.
    ///
    /// ```math
    /// \mathbf{S} = \mathbf{F}^{-1}\cdot\mathbf{P}
    /// ```
    fn second_piola_kirchhoff_stress(
        &self,
        deformation_gradient: &DeformationGradient,
    ) -> Result<SecondPiolaKirchhoffStress, ConstitutiveError> {
        Ok(deformation_gradient.inverse()
            * self.cauchy_stress(deformation_gradient)?
            * deformation_gradient.inverse_transpose()
            * deformation_gradient.determinant())
    }
    /// Calculates and returns the tangent stiffness associated with the second Piola-Kirchhoff stress.
    ///
    /// ```math
    /// \mathcal{G}_{IJkL} = \frac{\partial S_{IJ}}{\partial F_{kL}} = \mathcal{C}_{mJkL}F_{mI}^{-T} - S_{LJ}F_{kI}^{-T} = J \mathcal{T}_{mnkL} F_{mI}^{-T} F_{nJ}^{-T} + S_{IJ} F_{kL}^{-T} - S_{IL} F_{kJ}^{-T} -S_{LJ} F_{kI}^{-T}
    /// ```
    fn second_piola_kirchhoff_tangent_stiffness(
        &self,
        deformation_gradient: &DeformationGradient,
    ) -> Result<SecondPiolaKirchhoffTangentStiffness, ConstitutiveError> {
        let deformation_gradient_inverse_transpose = deformation_gradient.inverse_transpose();
        let deformation_gradient_inverse = deformation_gradient_inverse_transpose.transpose();
        let second_piola_kirchhoff_stress =
            self.second_piola_kirchhoff_stress(deformation_gradient)?;
        Ok(self
            .cauchy_tangent_stiffness(deformation_gradient)?
            .contract_first_second_indices_with_second_indices_of(
                &deformation_gradient_inverse,
                &deformation_gradient_inverse,
            )
            * deformation_gradient.determinant()
            + SecondPiolaKirchhoffTangentStiffness::dyad_ij_kl(
                &second_piola_kirchhoff_stress,
                &deformation_gradient_inverse_transpose,
            )
            - SecondPiolaKirchhoffTangentStiffness::dyad_il_kj(
                &second_piola_kirchhoff_stress,
                &deformation_gradient_inverse_transpose,
            )
            - SecondPiolaKirchhoffTangentStiffness::dyad_ik_jl(
                &deformation_gradient_inverse,
                &second_piola_kirchhoff_stress,
            ))
    }
    /// Solve for the unknown components of the Cauchy stress and deformation gradient under an applied load.
    fn solve(
        &self,
        applied_load: AppliedLoad,
    ) -> Result<(DeformationGradient, CauchyStress), ConstitutiveError> {
        let optimization = NewtonRaphson {
            ..Default::default()
        };
        let deformation_gradient = match applied_load {
            AppliedLoad::UniaxialStress(deformation_gradient_11) => {
                let deformation_gradient_33 = optimization.minimize(
                    |deformation_gradient_33: &Scalar| {
                        Ok(self.cauchy_stress(&DeformationGradient::new([
                            [deformation_gradient_11, 0.0, 0.0],
                            [0.0, *deformation_gradient_33, 0.0],
                            [0.0, 0.0, *deformation_gradient_33],
                        ]))?[2][2])
                    },
                    |deformation_gradient_33: &Scalar| {
                        Ok(self.cauchy_tangent_stiffness(&DeformationGradient::new([
                            [deformation_gradient_11, 0.0, 0.0],
                            [0.0, *deformation_gradient_33, 0.0],
                            [0.0, 0.0, *deformation_gradient_33],
                        ]))?[2][2][2][2])
                    },
                    1.0 / deformation_gradient_11.sqrt(),
                    None,
                    None,
                )?;
                DeformationGradient::new([
                    [deformation_gradient_11, 0.0, 0.0],
                    [0.0, deformation_gradient_33, 0.0],
                    [0.0, 0.0, deformation_gradient_33],
                ])
            }
            AppliedLoad::BiaxialStress(deformation_gradient_11, deformation_gradient_22) => {
                let deformation_gradient_33 = optimization.minimize(
                    |deformation_gradient_33: &Scalar| {
                        Ok(self.cauchy_stress(&DeformationGradient::new([
                            [deformation_gradient_11, 0.0, 0.0],
                            [0.0, deformation_gradient_22, 0.0],
                            [0.0, 0.0, *deformation_gradient_33],
                        ]))?[2][2])
                    },
                    |deformation_gradient_33: &Scalar| {
                        Ok(self.cauchy_tangent_stiffness(&DeformationGradient::new([
                            [deformation_gradient_11, 0.0, 0.0],
                            [0.0, deformation_gradient_22, 0.0],
                            [0.0, 0.0, *deformation_gradient_33],
                        ]))?[2][2][2][2])
                    },
                    1.0 / deformation_gradient_11 / deformation_gradient_22,
                    None,
                    None,
                )?;
                DeformationGradient::new([
                    [deformation_gradient_11, 0.0, 0.0],
                    [0.0, deformation_gradient_22, 0.0],
                    [0.0, 0.0, deformation_gradient_33],
                ])
            }
        };
        let cauchy_stress = self.cauchy_stress(&deformation_gradient)?;
        Ok((deformation_gradient, cauchy_stress))
    }
}