conspire/constitutive/solid/elastic_hyperviscous/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
//! Elastic-hyperviscous constitutive models.
//!
//! ---
//!
//! Elastic-hyperviscous constitutive models are defined by an elastic stress tensor function and a viscous dissipation function.
//!
//! ```math
//! \mathbf{P}:\dot{\mathbf{F}} - \mathbf{P}^e(\mathbf{F}):\dot{\mathbf{F}} - \phi(\mathbf{F},\dot{\mathbf{F}}) \geq 0
//! ```
//! Satisfying the second law of thermodynamics though a minimum viscous dissipation principal yields a relation for the stress.
//!
//! ```math
//! \mathbf{P} = \mathbf{P}^e + \frac{\partial\phi}{\partial\dot{\mathbf{F}}}
//! ```
//! Consequently, the rate tangent stiffness associated with the first Piola-Kirchhoff stress is symmetric for elastic-hyperviscous models.
//!
//! ```math
//! \mathcal{U}_{iJkL} = \mathcal{U}_{kLiJ}
//! ```

#[cfg(test)]
pub mod test;

mod almansi_hamel;

pub use almansi_hamel::AlmansiHamel;

use super::{super::fluid::viscous::Viscous, viscoelastic::Viscoelastic, *};
use crate::math::optimize::{NewtonRaphson, SecondOrder};
use std::fmt::Debug;

/// Required methods for elastic-hyperviscous constitutive models.
pub trait ElasticHyperviscous<'a>
where
    Self: Viscoelastic<'a> + Debug,
{
    /// Calculates and returns the dissipation potential.
    ///
    /// ```math
    /// \mathbf{P}^e(\mathbf{F}):\dot{\mathbf{F}} + \phi(\mathbf{F},\dot{\mathbf{F}})
    /// ```
    fn dissipation_potential(
        &self,
        deformation_gradient: &DeformationGradient,
        deformation_gradient_rate: &DeformationGradientRate,
    ) -> Result<Scalar, ConstitutiveError> {
        Ok(self
            .first_piola_kirchhoff_stress(deformation_gradient, &ZERO_10)?
            .full_contraction(deformation_gradient_rate)
            + self.viscous_dissipation(deformation_gradient, deformation_gradient_rate)?)
    }
    /// Calculates and returns the viscous dissipation.
    ///
    /// ```math
    /// \phi = \phi(\mathbf{F},\dot{\mathbf{F}})
    /// ```
    fn viscous_dissipation(
        &self,
        deformation_gradient: &DeformationGradient,
        deformation_gradient_rate: &DeformationGradientRate,
    ) -> Result<Scalar, ConstitutiveError>;
    /// Solve for the unknown components of the Cauchy stress and deformation gradient under uniaxial stress.
    fn solve_uniaxial<const W: usize>(
        &self,
        deformation_gradient_rate_11: impl Fn(Scalar) -> Scalar,
        evaluation_times: [Scalar; W],
    ) -> Result<(DeformationGradients<W>, CauchyStresses<W>), ConstitutiveError> {
        let mut cauchy_stresses = CauchyStresses::zero();
        let mut deformation_gradients = DeformationGradients::identity();
        let time_steps = evaluation_times.windows(2).map(|time| time[1] - time[0]);
        for ((index, time_step), time) in time_steps.enumerate().zip(evaluation_times.into_iter()) {
            (deformation_gradients[index + 1], cauchy_stresses[index + 1]) = self
                .solve_uniaxial_inner(
                    &deformation_gradients[index],
                    deformation_gradient_rate_11(time),
                    time_step,
                )?;
        }
        Ok((deformation_gradients, cauchy_stresses))
    }
    #[doc(hidden)]
    fn solve_uniaxial_inner(
        &self,
        deformation_gradient_previous: &DeformationGradient,
        deformation_gradient_rate_11: Scalar,
        time_step: Scalar,
    ) -> Result<(DeformationGradient, CauchyStress), ConstitutiveError> {
        let optimization = NewtonRaphson {
            ..Default::default()
        };
        let deformation_gradient = optimization.minimize(
            |deformation_gradient: &DeformationGradient| {
                let (deformation_gradient_rate, _) = self.solve_uniaxial_inner_inner(
                    deformation_gradient,
                    &deformation_gradient_rate_11,
                )?;
                Ok(deformation_gradient.clone()
                    - deformation_gradient_previous
                    - &deformation_gradient_rate * time_step)
            },
            |deformation_gradient: &DeformationGradient| {
                let (deformation_gradient_rate, _) = self.solve_uniaxial_inner_inner(
                    deformation_gradient,
                    &deformation_gradient_rate_11,
                )?;
                Ok(IDENTITY_1010
                    - TensorRank4::dyad_ik_jl(
                        &(&deformation_gradient_rate * deformation_gradient.inverse()),
                        &IDENTITY_00,
                    ) * time_step)
            },
            IDENTITY_10,
            None,
            None,
        )?;
        let (_, cauchy_stress) =
            self.solve_uniaxial_inner_inner(&deformation_gradient, &deformation_gradient_rate_11)?;
        Ok((deformation_gradient, cauchy_stress))
    }
    #[doc(hidden)]
    fn solve_uniaxial_inner_inner(
        &self,
        deformation_gradient: &DeformationGradient,
        deformation_gradient_rate_11: &Scalar,
    ) -> Result<(DeformationGradientRate, CauchyStress), ConstitutiveError> {
        let optimization = NewtonRaphson {
            ..Default::default()
        };
        let deformation_gradient_rate_33 = optimization.minimize(
            |deformation_gradient_rate_33: &Scalar| {
                Ok(self.cauchy_stress(
                    deformation_gradient,
                    &DeformationGradientRate::new([
                        [*deformation_gradient_rate_11, 0.0, 0.0],
                        [0.0, *deformation_gradient_rate_33, 0.0],
                        [0.0, 0.0, *deformation_gradient_rate_33],
                    ]),
                )?[2][2])
            },
            |deformation_gradient_rate_33: &Scalar| {
                Ok(self.cauchy_rate_tangent_stiffness(
                    deformation_gradient,
                    &DeformationGradientRate::new([
                        [*deformation_gradient_rate_11, 0.0, 0.0],
                        [0.0, *deformation_gradient_rate_33, 0.0],
                        [0.0, 0.0, *deformation_gradient_rate_33],
                    ]),
                )?[2][2][2][2])
            },
            -deformation_gradient_rate_11 / deformation_gradient[0][0].powf(1.5),
            None,
            None,
        )?;
        let deformation_gradient_rate = DeformationGradientRate::new([
            [*deformation_gradient_rate_11, 0.0, 0.0],
            [0.0, deformation_gradient_rate_33, 0.0],
            [0.0, 0.0, deformation_gradient_rate_33],
        ]);
        let cauchy_stress = self.cauchy_stress(deformation_gradient, &deformation_gradient_rate)?;
        Ok((deformation_gradient_rate, cauchy_stress))
    }
}