conspire/constitutive/solid/hyperviscoelastic/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
//! Hyperviscoelastic constitutive models.
//!
//! ---
//!
//! Hyperviscoelastic constitutive models are defined by a Helmholtz free energy density function and a viscous dissipation function.
//!
//! ```math
//! \mathbf{P}:\dot{\mathbf{F}} - \dot{a}(\mathbf{F}) - \phi(\mathbf{F},\dot{\mathbf{F}}) \geq 0
//! ```
//! Satisfying the second law of thermodynamics though a minimum viscous dissipation principal yields a relation for the stress.
//!
//! ```math
//! \mathbf{P} = \frac{\partial a}{\partial\mathbf{F}} + \frac{\partial\phi}{\partial\dot{\mathbf{F}}}
//! ```
//! Consequently, the rate tangent stiffness associated with the first Piola-Kirchhoff stress is symmetric for hyperviscoelastic models.
//!
//! ```math
//! \mathcal{U}_{iJkL} = \mathcal{U}_{kLiJ}
//! ```
#[cfg(test)]
pub mod test;
mod saint_venant_kirchhoff;
pub use saint_venant_kirchhoff::SaintVenantKirchhoff;
use super::{
super::fluid::viscous::Viscous, elastic_hyperviscous::ElasticHyperviscous,
viscoelastic::Viscoelastic, *,
};
use std::fmt::Debug;
/// Required methods for hyperviscoelastic constitutive models.
pub trait Hyperviscoelastic<'a>
where
Self: ElasticHyperviscous<'a>,
{
/// Calculates and returns the Helmholtz free energy density.
///
/// ```math
/// a = a(\mathbf{F})
/// ```
fn helmholtz_free_energy_density(
&self,
deformation_gradient: &DeformationGradient,
) -> Result<Scalar, ConstitutiveError>;
}