conspire/domain/fem/block/element/linear/hexahedron/
mod.rs1#[cfg(test)]
2mod test;
3
4use crate::{
5 fem::block::element::{
6 FRAC_1_SQRT_3, FiniteElement, ParametricCoordinate, ParametricCoordinates,
7 ParametricReference, ShapeFunctions, ShapeFunctionsGradients,
8 linear::{LinearElement, LinearFiniteElement, M},
9 },
10 math::ScalarList,
11};
12
13const G: usize = 8;
14const N: usize = 8;
15const P: usize = N;
16
17pub type Hexahedron = LinearElement<G, N>;
18
19impl FiniteElement<G, M, N, P> for Hexahedron {
20 fn integration_points() -> ParametricCoordinates<G, M> {
21 [
22 [-FRAC_1_SQRT_3, -FRAC_1_SQRT_3, -FRAC_1_SQRT_3],
23 [-FRAC_1_SQRT_3, -FRAC_1_SQRT_3, FRAC_1_SQRT_3],
24 [-FRAC_1_SQRT_3, FRAC_1_SQRT_3, -FRAC_1_SQRT_3],
25 [-FRAC_1_SQRT_3, FRAC_1_SQRT_3, FRAC_1_SQRT_3],
26 [FRAC_1_SQRT_3, -FRAC_1_SQRT_3, -FRAC_1_SQRT_3],
27 [FRAC_1_SQRT_3, -FRAC_1_SQRT_3, FRAC_1_SQRT_3],
28 [FRAC_1_SQRT_3, FRAC_1_SQRT_3, -FRAC_1_SQRT_3],
29 [FRAC_1_SQRT_3, FRAC_1_SQRT_3, FRAC_1_SQRT_3],
30 ]
31 .into()
32 }
33 fn integration_weights(&self) -> &ScalarList<G> {
34 &self.integration_weights
35 }
36 fn parametric_reference() -> ParametricReference<M, N> {
37 [
38 [-1.0, -1.0, -1.0],
39 [1.0, -1.0, -1.0],
40 [1.0, 1.0, -1.0],
41 [-1.0, 1.0, -1.0],
42 [-1.0, -1.0, 1.0],
43 [1.0, -1.0, 1.0],
44 [1.0, 1.0, 1.0],
45 [-1.0, 1.0, 1.0],
46 ]
47 .into()
48 }
49 fn parametric_weights() -> ScalarList<G> {
50 [1.0; G].into()
51 }
52 fn shape_functions(parametric_coordinate: ParametricCoordinate<M>) -> ShapeFunctions<N> {
53 let [xi_1, xi_2, xi_3] = parametric_coordinate.into();
54 [
55 (1.0 - xi_1) * (1.0 - xi_2) * (1.0 - xi_3) / 8.0,
56 (1.0 + xi_1) * (1.0 - xi_2) * (1.0 - xi_3) / 8.0,
57 (1.0 + xi_1) * (1.0 + xi_2) * (1.0 - xi_3) / 8.0,
58 (1.0 - xi_1) * (1.0 + xi_2) * (1.0 - xi_3) / 8.0,
59 (1.0 - xi_1) * (1.0 - xi_2) * (1.0 + xi_3) / 8.0,
60 (1.0 + xi_1) * (1.0 - xi_2) * (1.0 + xi_3) / 8.0,
61 (1.0 + xi_1) * (1.0 + xi_2) * (1.0 + xi_3) / 8.0,
62 (1.0 - xi_1) * (1.0 + xi_2) * (1.0 + xi_3) / 8.0,
63 ]
64 .into()
65 }
66 fn shape_functions_gradients(
67 parametric_coordinate: ParametricCoordinate<M>,
68 ) -> ShapeFunctionsGradients<M, N> {
69 let [xi_1, xi_2, xi_3] = parametric_coordinate.into();
70 [
71 [
72 -(1.0 - xi_2) * (1.0 - xi_3) / 8.0,
73 -(1.0 - xi_1) * (1.0 - xi_3) / 8.0,
74 -(1.0 - xi_1) * (1.0 - xi_2) / 8.0,
75 ],
76 [
77 (1.0 - xi_2) * (1.0 - xi_3) / 8.0,
78 -(1.0 + xi_1) * (1.0 - xi_3) / 8.0,
79 -(1.0 + xi_1) * (1.0 - xi_2) / 8.0,
80 ],
81 [
82 (1.0 + xi_2) * (1.0 - xi_3) / 8.0,
83 (1.0 + xi_1) * (1.0 - xi_3) / 8.0,
84 -(1.0 + xi_1) * (1.0 + xi_2) / 8.0,
85 ],
86 [
87 -(1.0 + xi_2) * (1.0 - xi_3) / 8.0,
88 (1.0 - xi_1) * (1.0 - xi_3) / 8.0,
89 -(1.0 - xi_1) * (1.0 + xi_2) / 8.0,
90 ],
91 [
92 -(1.0 - xi_2) * (1.0 + xi_3) / 8.0,
93 -(1.0 - xi_1) * (1.0 + xi_3) / 8.0,
94 (1.0 - xi_1) * (1.0 - xi_2) / 8.0,
95 ],
96 [
97 (1.0 - xi_2) * (1.0 + xi_3) / 8.0,
98 -(1.0 + xi_1) * (1.0 + xi_3) / 8.0,
99 (1.0 + xi_1) * (1.0 - xi_2) / 8.0,
100 ],
101 [
102 (1.0 + xi_2) * (1.0 + xi_3) / 8.0,
103 (1.0 + xi_1) * (1.0 + xi_3) / 8.0,
104 (1.0 + xi_1) * (1.0 + xi_2) / 8.0,
105 ],
106 [
107 -(1.0 + xi_2) * (1.0 + xi_3) / 8.0,
108 (1.0 - xi_1) * (1.0 + xi_3) / 8.0,
109 (1.0 - xi_1) * (1.0 + xi_2) / 8.0,
110 ],
111 ]
112 .into()
113 }
114}
115
116impl LinearFiniteElement<G, N> for Hexahedron {}