conspire/math/integrate/backward_euler/
mod.rs#[cfg(test)]
mod test;
use super::{
super::{
interpolate::InterpolateSolution,
optimize::{FirstOrder, NewtonRaphson, Optimization, SecondOrder},
Hessian, Tensor, TensorArray, TensorRank0, TensorVec, Vector,
},
Implicit, IntegrationError,
};
use std::ops::{Div, Mul, Sub};
#[derive(Debug)]
pub struct BackwardEuler {
pub opt_alg: Optimization,
}
impl Default for BackwardEuler {
fn default() -> Self {
Self {
opt_alg: Optimization::NewtonRaphson(NewtonRaphson {
check_minimum: false,
..Default::default()
}),
}
}
}
impl<Y, J, U> Implicit<Y, J, U> for BackwardEuler
where
Self: InterpolateSolution<Y, U>,
Y: Tensor + TensorArray + Div<J, Output = Y>,
for<'a> &'a Y: Mul<TensorRank0, Output = Y> + Sub<&'a Y, Output = Y>,
J: Hessian + Tensor + TensorArray,
U: TensorVec<Item = Y>,
{
fn integrate(
&self,
function: impl Fn(&TensorRank0, &Y) -> Y,
jacobian: impl Fn(&TensorRank0, &Y) -> J,
time: &[TensorRank0],
initial_condition: Y,
) -> Result<(Vector, U), IntegrationError> {
if time.len() < 2 {
return Err(IntegrationError::LengthTimeLessThanTwo);
} else if time[0] >= time[time.len() - 1] {
return Err(IntegrationError::InitialTimeNotLessThanFinalTime);
}
let mut index = 0;
let mut t = time[0];
let mut dt;
let identity = J::identity();
let mut t_sol = Vector::zero(0);
t_sol.push(time[0]);
let mut t_trial;
let mut y = initial_condition.clone();
let mut y_sol = U::zero(0);
y_sol.push(initial_condition.clone());
let mut y_trial;
while t < time[time.len() - 1] {
t_trial = time[index + 1];
dt = t_trial - t;
y_trial = match &self.opt_alg {
Optimization::GradientDescent(gradient_descent) => gradient_descent
.minimize(
|y_trial: &Y| Ok(y_trial - &y - &(&function(&t_trial, y_trial) * dt)),
y.clone(),
None,
None,
)
.unwrap(),
Optimization::NewtonRaphson(newton_raphson) => newton_raphson
.minimize(
|y_trial: &Y| Ok(y_trial - &y - &(&function(&t_trial, y_trial) * dt)),
|y_trial: &Y| Ok(jacobian(&t_trial, y_trial) * -dt + &identity),
y.clone(),
None,
None,
)
.unwrap(),
};
t = t_trial;
y = y_trial;
t_sol.push(t);
y_sol.push(y.clone());
index += 1;
}
Ok((t_sol, y_sol))
}
}
impl<Y, U> InterpolateSolution<Y, U> for BackwardEuler
where
Y: Tensor + TensorArray,
for<'a> &'a Y: Mul<TensorRank0, Output = Y> + Sub<&'a Y, Output = Y>,
U: TensorVec<Item = Y>,
{
fn interpolate(
&self,
_time: &Vector,
_tp: &Vector,
_yp: &U,
_function: impl Fn(&TensorRank0, &Y) -> Y,
) -> U {
unimplemented!()
}
}