conspire/math/integrate/bogacki_shampine/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
#[cfg(test)]
mod test;

use super::{
    super::{
        interpolate::InterpolateSolution, Tensor, TensorArray, TensorRank0, TensorVec, Vector,
    },
    Explicit, IntegrationError,
};
use crate::{ABS_TOL, REL_TOL};
use std::ops::{Mul, Sub};

/// Explicit, three-stage, third-order, variable-step, Runge-Kutta method.[^cite]
///
/// [^cite]: P. Bogacki and L.F. Shampine, [Appl. Math. Lett. **2**, 321 (1989)](https://doi.org/10.1016/0893-9659(89)90079-7).
///
/// ```math
/// \frac{dy}{dt} = f(t, y)
/// ```
/// ```math
/// t_{n+1} = t_n + h
/// ```
/// ```math
/// k_1 = f(t_n, y_n)
/// ```
/// ```math
/// k_2 = f(t_n + \tfrac{1}{2} h, y_n + \tfrac{1}{2} h k_1)
/// ```
/// ```math
/// k_3 = f(t_n + \tfrac{3}{4} h, y_n + \tfrac{3}{4} h k_2)
/// ```
/// ```math
/// y_{n+1} = y_n + \frac{h}{9}\left(2k_1 + 3k_2 + 4k_3\right)
/// ```
/// ```math
/// k_4 = f(t_{n+1}, y_{n+1})
/// ```
/// ```math
/// e_{n+1} = \frac{h}{72}\left(-5k_1 + 6k_2 + 8k_3 - 9k_4\right)
/// ```
/// ```math
/// h_{n+1} = \beta h \left(\frac{e_\mathrm{tol}}{e_{n+1}}\right)^{1/p}
/// ```
#[derive(Debug)]
pub struct BogackiShampine {
    /// Absolute error tolerance.
    pub abs_tol: TensorRank0,
    /// Relative error tolerance.
    pub rel_tol: TensorRank0,
    /// Multiplier for adaptive time steps.
    pub dt_beta: TensorRank0,
    /// Exponent for adaptive time steps.
    pub dt_expn: TensorRank0,
    /// Initial relative time step.
    pub dt_init: TensorRank0,
}

impl Default for BogackiShampine {
    fn default() -> Self {
        Self {
            abs_tol: ABS_TOL,
            rel_tol: REL_TOL,
            dt_beta: 0.9,
            dt_expn: 3.0,
            dt_init: 0.1,
        }
    }
}

impl<Y, U> Explicit<Y, U> for BogackiShampine
where
    Self: InterpolateSolution<Y, U>,
    Y: Tensor + TensorArray,
    for<'a> &'a Y: Mul<TensorRank0, Output = Y> + Sub<&'a Y, Output = Y>,
    U: TensorVec<Item = Y>,
{
    fn integrate(
        &self,
        function: impl Fn(&TensorRank0, &Y) -> Y,
        time: &[TensorRank0],
        initial_condition: Y,
    ) -> Result<(Vector, U), IntegrationError> {
        if time.len() < 2 {
            return Err(IntegrationError::LengthTimeLessThanTwo);
        } else if time[0] >= time[time.len() - 1] {
            return Err(IntegrationError::InitialTimeNotLessThanFinalTime);
        }
        let mut t = time[0];
        let mut dt = self.dt_init * time[time.len() - 1];
        let mut e;
        let mut k_1 = function(&t, &initial_condition);
        let mut k_2;
        let mut k_3;
        let mut k_4;
        let mut t_sol = Vector::zero(0);
        t_sol.push(time[0]);
        let mut y = initial_condition.clone();
        let mut y_sol = U::zero(0);
        y_sol.push(initial_condition.clone());
        let mut y_trial;
        while t < time[time.len() - 1] {
            k_2 = function(&(t + 0.5 * dt), &(&k_1 * (0.5 * dt) + &y));
            k_3 = function(&(t + 0.75 * dt), &(&k_2 * (0.75 * dt) + &y));
            y_trial = (&k_1 * 2.0 + &k_2 * 3.0 + &k_3 * 4.0) * (dt / 9.0) + &y;
            k_4 = function(&(t + dt), &y_trial);
            e = ((&k_1 * -5.0 + k_2 * 6.0 + k_3 * 8.0 + &k_4 * -9.0) * (dt / 72.0)).norm();
            if e < self.abs_tol || e / y_trial.norm() < self.rel_tol {
                k_1 = k_4;
                t += dt;
                y = y_trial;
                t_sol.push(t);
                y_sol.push(y.clone());
            }
            dt *= self.dt_beta * (self.abs_tol / e).powf(1.0 / self.dt_expn);
        }
        if time.len() > 2 {
            let t_int = Vector::new(time);
            let y_int = self.interpolate(&t_int, &t_sol, &y_sol, function);
            Ok((t_int, y_int))
        } else {
            Ok((t_sol, y_sol))
        }
    }
}

impl<Y, U> InterpolateSolution<Y, U> for BogackiShampine
where
    Y: Tensor + TensorArray,
    for<'a> &'a Y: Mul<TensorRank0, Output = Y> + Sub<&'a Y, Output = Y>,
    U: TensorVec<Item = Y>,
{
    fn interpolate(
        &self,
        time: &Vector,
        tp: &Vector,
        yp: &U,
        function: impl Fn(&TensorRank0, &Y) -> Y,
    ) -> U {
        let mut dt = 0.0;
        let mut i = 0;
        let mut k_1 = Y::zero();
        let mut k_2 = Y::zero();
        let mut k_3 = Y::zero();
        let mut t = 0.0;
        let mut y = Y::zero();
        time.iter()
            .map(|time_k| {
                i = tp.iter().position(|tp_i| tp_i > time_k).unwrap();
                t = tp[i - 1];
                y = yp[i - 1].clone();
                dt = time_k - t;
                k_1 = function(&t, &y);
                k_2 = function(&(t + 0.5 * dt), &(&k_1 * (0.5 * dt) + &y));
                k_3 = function(&(t + 0.75 * dt), &(&k_2 * (0.75 * dt) + &y));
                (&k_1 * 2.0 + &k_2 * 3.0 + &k_3 * 4.0) * (dt / 9.0) + &y
            })
            .collect()
    }
}