conspire/math/integrate/dormand_prince/
mod.rs1#[cfg(test)]
2mod test;
3
4use super::{
5 super::{Tensor, TensorRank0, TensorVec, Vector, interpolate::InterpolateSolution},
6 Explicit, IntegrationError,
7};
8use crate::{ABS_TOL, REL_TOL};
9use std::ops::{Mul, Sub};
10
11const C_44_45: TensorRank0 = 44.0 / 45.0;
12const C_56_15: TensorRank0 = 56.0 / 15.0;
13const C_32_9: TensorRank0 = 32.0 / 9.0;
14const C_8_9: TensorRank0 = 8.0 / 9.0;
15const C_19372_6561: TensorRank0 = 19372.0 / 6561.0;
16const C_25360_2187: TensorRank0 = 25360.0 / 2187.0;
17const C_64448_6561: TensorRank0 = 64448.0 / 6561.0;
18const C_212_729: TensorRank0 = 212.0 / 729.0;
19const C_9017_3168: TensorRank0 = 9017.0 / 3168.0;
20const C_355_33: TensorRank0 = 355.0 / 33.0;
21const C_46732_5247: TensorRank0 = 46732.0 / 5247.0;
22const C_49_176: TensorRank0 = 49.0 / 176.0;
23const C_5103_18656: TensorRank0 = 5103.0 / 18656.0;
24const C_35_384: TensorRank0 = 35.0 / 384.0;
25const C_500_1113: TensorRank0 = 500.0 / 1113.0;
26const C_125_192: TensorRank0 = 125.0 / 192.0;
27const C_2187_6784: TensorRank0 = 2187.0 / 6784.0;
28const C_11_84: TensorRank0 = 11.0 / 84.0;
29const C_71_57600: TensorRank0 = 71.0 / 57600.0;
30const C_71_16695: TensorRank0 = 71.0 / 16695.0;
31const C_71_1920: TensorRank0 = 71.0 / 1920.0;
32const C_17253_339200: TensorRank0 = 17253.0 / 339200.0;
33const C_22_525: TensorRank0 = 22.0 / 525.0;
34
35#[derive(Debug)]
76pub struct DormandPrince {
77 pub abs_tol: TensorRank0,
79 pub rel_tol: TensorRank0,
81 pub dt_beta: TensorRank0,
83 pub dt_expn: TensorRank0,
85 pub dt_init: TensorRank0,
87}
88
89impl Default for DormandPrince {
90 fn default() -> Self {
91 Self {
92 abs_tol: ABS_TOL,
93 rel_tol: REL_TOL,
94 dt_beta: 0.9,
95 dt_expn: 5.0,
96 dt_init: 0.1,
97 }
98 }
99}
100
101impl<Y, U> Explicit<Y, U> for DormandPrince
102where
103 Self: InterpolateSolution<Y, U>,
104 Y: Tensor,
105 for<'a> &'a Y: Mul<TensorRank0, Output = Y> + Sub<&'a Y, Output = Y>,
106 U: TensorVec<Item = Y>,
107{
108 fn integrate(
109 &self,
110 function: impl Fn(TensorRank0, &Y) -> Result<Y, IntegrationError>,
111 time: &[TensorRank0],
112 initial_condition: Y,
113 ) -> Result<(Vector, U, U), IntegrationError> {
114 if time.len() < 2 {
115 return Err(IntegrationError::LengthTimeLessThanTwo);
116 } else if time[0] >= time[time.len() - 1] {
117 return Err(IntegrationError::InitialTimeNotLessThanFinalTime);
118 }
119 let mut t = time[0];
120 let mut dt = self.dt_init * time[time.len() - 1];
121 let mut e;
122 let mut k_1 = function(t, &initial_condition)?;
123 let mut k_2;
124 let mut k_3;
125 let mut k_4;
126 let mut k_5;
127 let mut k_6;
128 let mut k_7;
129 let mut t_sol = Vector::zero(0);
130 t_sol.push(time[0]);
131 let mut y = initial_condition.clone();
132 let mut y_sol = U::zero(0);
133 y_sol.push(initial_condition.clone());
134 let mut dydt_sol = U::zero(0);
135 dydt_sol.push(k_1.clone());
136 let mut y_trial;
137 while t < time[time.len() - 1] {
138 k_2 = function(t + 0.2 * dt, &(&k_1 * (0.2 * dt) + &y))?;
139 k_3 = function(
140 t + 0.3 * dt,
141 &(&k_1 * (0.075 * dt) + &k_2 * (0.225 * dt) + &y),
142 )?;
143 k_4 = function(
144 t + 0.8 * dt,
145 &(&k_1 * (C_44_45 * dt) - &k_2 * (C_56_15 * dt) + &k_3 * (C_32_9 * dt) + &y),
146 )?;
147 k_5 = function(
148 t + C_8_9 * dt,
149 &(&k_1 * (C_19372_6561 * dt) - &k_2 * (C_25360_2187 * dt)
150 + &k_3 * (C_64448_6561 * dt)
151 - &k_4 * (C_212_729 * dt)
152 + &y),
153 )?;
154 k_6 = function(
155 t + dt,
156 &(&k_1 * (C_9017_3168 * dt) - &k_2 * (C_355_33 * dt)
157 + &k_3 * (C_46732_5247 * dt)
158 + &k_4 * (C_49_176 * dt)
159 - &k_5 * (C_5103_18656 * dt)
160 + &y),
161 )?;
162 y_trial = (&k_1 * C_35_384 + &k_3 * C_500_1113 + &k_4 * C_125_192 - &k_5 * C_2187_6784
163 + &k_6 * C_11_84)
164 * dt
165 + &y;
166 k_7 = function(t + dt, &y_trial)?;
167 e = ((&k_1 * C_71_57600 - k_3 * C_71_16695 + k_4 * C_71_1920 - k_5 * C_17253_339200
168 + k_6 * C_22_525
169 - &k_7 * 0.025)
170 * dt)
171 .norm_inf();
172 if e < self.abs_tol || e / y_trial.norm_inf() < self.rel_tol {
173 k_1 = k_7;
174 t += dt;
175 y = y_trial;
176 t_sol.push(t);
177 y_sol.push(y.clone());
178 dydt_sol.push(k_1.clone());
179 }
180 dt *= self.dt_beta * (self.abs_tol / e).powf(1.0 / self.dt_expn);
181 }
182 if time.len() > 2 {
183 let t_int = Vector::new(time);
184 let (y_int, dydt_int) = self.interpolate(&t_int, &t_sol, &y_sol, function)?;
185 Ok((t_int, y_int, dydt_int))
186 } else {
187 Ok((t_sol, y_sol, dydt_sol))
188 }
189 }
190}
191
192impl<Y, U> InterpolateSolution<Y, U> for DormandPrince
193where
194 Y: Tensor,
195 for<'a> &'a Y: Mul<TensorRank0, Output = Y> + Sub<&'a Y, Output = Y>,
196 U: TensorVec<Item = Y>,
197{
198 fn interpolate(
199 &self,
200 time: &Vector,
201 tp: &Vector,
202 yp: &U,
203 function: impl Fn(TensorRank0, &Y) -> Result<Y, IntegrationError>,
204 ) -> Result<(U, U), IntegrationError> {
205 let mut dt;
206 let mut i;
207 let mut k_1;
208 let mut k_2;
209 let mut k_3;
210 let mut k_4;
211 let mut k_5;
212 let mut k_6;
213 let mut t;
214 let mut y;
215 let mut y_int = U::zero(0);
216 let mut dydt_int = U::zero(0);
217 let mut y_trial;
218 for time_k in time.iter() {
219 i = tp.iter().position(|tp_i| tp_i > time_k).unwrap();
220 t = tp[i - 1];
221 y = yp[i - 1].clone();
222 dt = time_k - t;
223 k_1 = function(t, &y)?;
224 k_2 = function(t + 0.2 * dt, &(&k_1 * (0.2 * dt) + &y))?;
225 k_3 = function(
226 t + 0.3 * dt,
227 &(&k_1 * (0.075 * dt) + &k_2 * (0.225 * dt) + &y),
228 )?;
229 k_4 = function(
230 t + 0.8 * dt,
231 &(&k_1 * (C_44_45 * dt) - &k_2 * (C_56_15 * dt) + &k_3 * (C_32_9 * dt) + &y),
232 )?;
233 k_5 = function(
234 t + C_8_9 * dt,
235 &(&k_1 * (C_19372_6561 * dt) - &k_2 * (C_25360_2187 * dt)
236 + &k_3 * (C_64448_6561 * dt)
237 - &k_4 * (C_212_729 * dt)
238 + &y),
239 )?;
240 k_6 = function(
241 t + dt,
242 &(&k_1 * (C_9017_3168 * dt) - &k_2 * (C_355_33 * dt)
243 + &k_3 * (C_46732_5247 * dt)
244 + &k_4 * (C_49_176 * dt)
245 - &k_5 * (C_5103_18656 * dt)
246 + &y),
247 )?;
248 y_trial = (&k_1 * C_35_384 + &k_3 * C_500_1113 + &k_4 * C_125_192 - &k_5 * C_2187_6784
249 + &k_6 * C_11_84)
250 * dt
251 + &y;
252 dydt_int.push(function(t + dt, &y_trial)?);
253 y_int.push(y_trial);
254 }
255 Ok((y_int, dydt_int))
256 }
257}