conspire/math/integrate/ode/explicit/variable_step/verner_9/
mod.rs1#[cfg(test)]
2mod test;
3
4use crate::math::{
5 Scalar, Tensor, TensorVec, Vector,
6 integrate::{Explicit, IntegrationError, OdeSolver, VariableStep, VariableStepExplicit},
7 interpolate::InterpolateSolution,
8};
9use crate::{ABS_TOL, REL_TOL};
10use std::ops::{Mul, Sub};
11
12const C_2: Scalar = 0.03462;
13const C_3: Scalar = 0.097_024_350_638_780_44;
14const C_4: Scalar = 0.145_536_525_958_170_67;
15const C_5: Scalar = 0.561;
16const C_6: Scalar = 0.229_007_911_590_485;
17const C_7: Scalar = 0.544_992_088_409_515;
18const C_8: Scalar = 0.645;
19const C_9: Scalar = 0.48375;
20const C_10: Scalar = 0.06757;
21const C_11: Scalar = 0.2500;
22const C_12: Scalar = 0.659_065_061_873_099_9;
23const C_13: Scalar = 0.8206;
24const C_14: Scalar = 0.9012;
25
26const A_2_1: Scalar = 0.03462;
27const A_3_1: Scalar = -0.03893354388572875;
28const A_3_2: Scalar = 0.13595789452450918;
29const A_4_1: Scalar = 0.03638413148954267;
30const A_4_3: Scalar = 0.10915239446862801;
31const A_5_1: Scalar = 2.0257639143939694;
32const A_5_3: Scalar = -7.638023836496291;
33const A_5_4: Scalar = 6.173259922102322;
34const A_6_1: Scalar = 0.05112275589406061;
35const A_6_4: Scalar = 0.17708237945550218;
36const A_6_5: Scalar = 0.0008027762409222536;
37const A_7_1: Scalar = 0.13160063579752163;
38const A_7_4: Scalar = -0.2957276252669636;
39const A_7_5: Scalar = 0.08781378035642955;
40const A_7_6: Scalar = 0.6213052975225274;
41const A_8_1: Scalar = 0.07166666666666667;
42const A_8_6: Scalar = 0.33055335789153195;
43const A_8_7: Scalar = 0.2427799754418014;
44const A_9_1: Scalar = 0.071806640625;
45const A_9_6: Scalar = 0.3294380283228177;
46const A_9_7: Scalar = 0.1165190029271823;
47const A_9_8: Scalar = -0.034013671875;
48const A_10_1: Scalar = 0.04836757646340646;
49const A_10_6: Scalar = 0.03928989925676164;
50const A_10_7: Scalar = 0.10547409458903446;
51const A_10_8: Scalar = -0.021438652846483126;
52const A_10_9: Scalar = -0.10412291746271944;
53const A_11_1: Scalar = -0.026645614872014785;
54const A_11_6: Scalar = 0.03333333333333333;
55const A_11_7: Scalar = -0.1631072244872467;
56const A_11_8: Scalar = 0.03396081684127761;
57const A_11_9: Scalar = 0.1572319413814626;
58const A_11_10: Scalar = 0.21522674780318796;
59const A_12_1: Scalar = 0.03689009248708622;
60const A_12_6: Scalar = -0.1465181576725543;
61const A_12_7: Scalar = 0.2242577768172024;
62const A_12_8: Scalar = 0.02294405717066073;
63const A_12_9: Scalar = -0.0035850052905728597;
64const A_12_10: Scalar = 0.08669223316444385;
65const A_12_11: Scalar = 0.43838406519683376;
66const A_13_1: Scalar = -0.4866012215113341;
67const A_13_6: Scalar = -6.304602650282853;
68const A_13_7: Scalar = -0.2812456182894729;
69const A_13_8: Scalar = -2.679019236219849;
70const A_13_9: Scalar = 0.5188156639241577;
71const A_13_10: Scalar = 1.3653531876033418;
72const A_13_11: Scalar = 5.8850910885039465;
73const A_13_12: Scalar = 2.8028087862720628;
74const A_14_1: Scalar = 0.4185367457753472;
75const A_14_6: Scalar = 6.724547581906459;
76const A_14_7: Scalar = -0.42544428016461133;
77const A_14_8: Scalar = 3.3432791530012653;
78const A_14_9: Scalar = 0.6170816631175374;
79const A_14_10: Scalar = -0.9299661239399329;
80const A_14_11: Scalar = -6.099948804751011;
81const A_14_12: Scalar = -3.002206187889399;
82const A_14_13: Scalar = 0.2553202529443446;
83const A_15_1: Scalar = -0.7793740861228848;
84const A_15_6: Scalar = -13.937342538107776;
85const A_15_7: Scalar = 1.2520488533793563;
86const A_15_8: Scalar = -14.691500408016868;
87const A_15_9: Scalar = -0.494705058533141;
88const A_15_10: Scalar = 2.2429749091462368;
89const A_15_11: Scalar = 13.367893803828643;
90const A_15_12: Scalar = 14.396650486650687;
91const A_15_13: Scalar = -0.79758133317768;
92const A_15_14: Scalar = 0.4409353709534278;
93const A_16_1: Scalar = 2.0580513374668867;
94const A_16_6: Scalar = 22.357937727968032;
95const A_16_7: Scalar = 0.9094981099755646;
96const A_16_8: Scalar = 35.89110098240264;
97const A_16_9: Scalar = -3.442515027624454;
98const A_16_10: Scalar = -4.865481358036369;
99const A_16_11: Scalar = -18.909803813543427;
100const A_16_12: Scalar = -34.26354448030452;
101const A_16_13: Scalar = 1.2647565216956427;
102
103const B_1: Scalar = 0.014611976858423152;
104const B_8: Scalar = -0.3915211862331339;
105const B_9: Scalar = 0.23109325002895065;
106const B_10: Scalar = 0.12747667699928525;
107const B_11: Scalar = 0.2246434176204158;
108const B_12: Scalar = 0.5684352689748513;
109const B_13: Scalar = 0.058258715572158275;
110const B_14: Scalar = 0.13643174034822156;
111const B_15: Scalar = 0.030570139830827976;
112
113const D_1: Scalar = -0.005357988290444578;
114const D_8: Scalar = -2.583020491182464;
115const D_9: Scalar = 0.14252253154686625;
116const D_10: Scalar = 0.013420653512688676;
117const D_11: Scalar = -0.02867296291409493;
118const D_12: Scalar = 2.624999655215792;
119const D_13: Scalar = -0.2825509643291537;
120const D_14: Scalar = 0.13643174034822156;
121const D_15: Scalar = 0.030570139830827976;
122const D_16: Scalar = -0.04834231373823958;
123
124#[doc = include_str!("doc.md")]
125#[derive(Debug)]
126pub struct Verner9 {
127 pub abs_tol: Scalar,
129 pub rel_tol: Scalar,
131 pub dt_beta: Scalar,
133 pub dt_expn: Scalar,
135 pub dt_cut: Scalar,
137 pub dt_min: Scalar,
139}
140
141impl Default for Verner9 {
142 fn default() -> Self {
143 Self {
144 abs_tol: ABS_TOL,
145 rel_tol: REL_TOL,
146 dt_beta: 0.9,
147 dt_expn: 9.0,
148 dt_cut: 0.5,
149 dt_min: ABS_TOL,
150 }
151 }
152}
153
154impl<Y, U> OdeSolver<Y, U> for Verner9
155where
156 Y: Tensor,
157 U: TensorVec<Item = Y>,
158{
159}
160
161impl VariableStep for Verner9 {
162 fn abs_tol(&self) -> Scalar {
163 self.abs_tol
164 }
165 fn rel_tol(&self) -> Scalar {
166 self.rel_tol
167 }
168 fn dt_beta(&self) -> Scalar {
169 self.dt_beta
170 }
171 fn dt_expn(&self) -> Scalar {
172 self.dt_expn
173 }
174 fn dt_cut(&self) -> Scalar {
175 self.dt_cut
176 }
177 fn dt_min(&self) -> Scalar {
178 self.dt_min
179 }
180}
181
182impl<Y, U> Explicit<Y, U> for Verner9
183where
184 Self: OdeSolver<Y, U>,
185 Y: Tensor,
186 for<'a> &'a Y: Mul<Scalar, Output = Y> + Sub<&'a Y, Output = Y>,
187 U: TensorVec<Item = Y>,
188{
189 const SLOPES: usize = 16;
190 fn integrate(
191 &self,
192 function: impl FnMut(Scalar, &Y) -> Result<Y, String>,
193 time: &[Scalar],
194 initial_condition: Y,
195 ) -> Result<(Vector, U, U), IntegrationError> {
196 self.integrate_variable_step(function, time, initial_condition)
197 }
198}
199
200impl<Y, U> VariableStepExplicit<Y, U> for Verner9
201where
202 Self: OdeSolver<Y, U>,
203 Y: Tensor,
204 for<'a> &'a Y: Mul<Scalar, Output = Y> + Sub<&'a Y, Output = Y>,
205 U: TensorVec<Item = Y>,
206{
207 fn slopes(
208 &self,
209 mut function: impl FnMut(Scalar, &Y) -> Result<Y, String>,
210 y: &Y,
211 t: Scalar,
212 dt: Scalar,
213 k: &mut [Y],
214 y_trial: &mut Y,
215 ) -> Result<Scalar, String> {
216 k[0] = function(t, y)?;
217 *y_trial = &k[0] * (A_2_1 * dt) + y;
218 k[1] = function(t + C_2 * dt, y_trial)?;
219 *y_trial = &k[0] * (A_3_1 * dt) + &k[1] * (A_3_2 * dt) + y;
220 k[2] = function(t + C_3 * dt, y_trial)?;
221 *y_trial = &k[0] * (A_4_1 * dt) + &k[2] * (A_4_3 * dt) + y;
222 k[3] = function(t + C_4 * dt, y_trial)?;
223 *y_trial = &k[0] * (A_5_1 * dt) + &k[2] * (A_5_3 * dt) + &k[3] * (A_5_4 * dt) + y;
224 k[4] = function(t + C_5 * dt, y_trial)?;
225 *y_trial = &k[0] * (A_6_1 * dt) + &k[3] * (A_6_4 * dt) + &k[4] * (A_6_5 * dt) + y;
226 k[5] = function(t + C_6 * dt, y_trial)?;
227 *y_trial = &k[0] * (A_7_1 * dt)
228 + &k[3] * (A_7_4 * dt)
229 + &k[4] * (A_7_5 * dt)
230 + &k[5] * (A_7_6 * dt)
231 + y;
232 k[6] = function(t + C_7 * dt, y_trial)?;
233 *y_trial = &k[0] * (A_8_1 * dt) + &k[5] * (A_8_6 * dt) + &k[6] * (A_8_7 * dt) + y;
234 k[7] = function(t + C_8 * dt, y_trial)?;
235 *y_trial = &k[0] * (A_9_1 * dt)
236 + &k[5] * (A_9_6 * dt)
237 + &k[6] * (A_9_7 * dt)
238 + &k[7] * (A_9_8 * dt)
239 + y;
240 k[8] = function(t + C_9 * dt, y_trial)?;
241 *y_trial = &k[0] * (A_10_1 * dt)
242 + &k[5] * (A_10_6 * dt)
243 + &k[6] * (A_10_7 * dt)
244 + &k[7] * (A_10_8 * dt)
245 + &k[8] * (A_10_9 * dt)
246 + y;
247 k[9] = function(t + C_10 * dt, y_trial)?;
248 *y_trial = &k[0] * (A_11_1 * dt)
249 + &k[5] * (A_11_6 * dt)
250 + &k[6] * (A_11_7 * dt)
251 + &k[7] * (A_11_8 * dt)
252 + &k[8] * (A_11_9 * dt)
253 + &k[9] * (A_11_10 * dt)
254 + y;
255 k[10] = function(t + C_11 * dt, y_trial)?;
256 *y_trial = &k[0] * (A_12_1 * dt)
257 + &k[5] * (A_12_6 * dt)
258 + &k[6] * (A_12_7 * dt)
259 + &k[7] * (A_12_8 * dt)
260 + &k[8] * (A_12_9 * dt)
261 + &k[9] * (A_12_10 * dt)
262 + &k[10] * (A_12_11 * dt)
263 + y;
264 k[11] = function(t + C_12 * dt, y_trial)?;
265 *y_trial = &k[0] * (A_13_1 * dt)
266 + &k[5] * (A_13_6 * dt)
267 + &k[6] * (A_13_7 * dt)
268 + &k[7] * (A_13_8 * dt)
269 + &k[8] * (A_13_9 * dt)
270 + &k[9] * (A_13_10 * dt)
271 + &k[10] * (A_13_11 * dt)
272 + &k[11] * (A_13_12 * dt)
273 + y;
274 k[12] = function(t + C_13 * dt, y_trial)?;
275 *y_trial = &k[0] * (A_14_1 * dt)
276 + &k[5] * (A_14_6 * dt)
277 + &k[6] * (A_14_7 * dt)
278 + &k[7] * (A_14_8 * dt)
279 + &k[8] * (A_14_9 * dt)
280 + &k[9] * (A_14_10 * dt)
281 + &k[10] * (A_14_11 * dt)
282 + &k[11] * (A_14_12 * dt)
283 + &k[12] * (A_14_13 * dt)
284 + y;
285 k[13] = function(t + C_14 * dt, y_trial)?;
286 *y_trial = &k[0] * (A_15_1 * dt)
287 + &k[5] * (A_15_6 * dt)
288 + &k[6] * (A_15_7 * dt)
289 + &k[7] * (A_15_8 * dt)
290 + &k[8] * (A_15_9 * dt)
291 + &k[9] * (A_15_10 * dt)
292 + &k[10] * (A_15_11 * dt)
293 + &k[11] * (A_15_12 * dt)
294 + &k[12] * (A_15_13 * dt)
295 + &k[13] * (A_15_14 * dt)
296 + y;
297 k[14] = function(t + dt, y_trial)?;
298 *y_trial = &k[0] * (A_16_1 * dt)
299 + &k[5] * (A_16_6 * dt)
300 + &k[6] * (A_16_7 * dt)
301 + &k[7] * (A_16_8 * dt)
302 + &k[8] * (A_16_9 * dt)
303 + &k[9] * (A_16_10 * dt)
304 + &k[10] * (A_16_11 * dt)
305 + &k[11] * (A_16_12 * dt)
306 + &k[12] * (A_16_13 * dt)
307 + y;
308 k[15] = function(t + dt, y_trial)?;
309 *y_trial = (&k[0] * B_1
310 + &k[7] * B_8
311 + &k[8] * B_9
312 + &k[9] * B_10
313 + &k[10] * B_11
314 + &k[11] * B_12
315 + &k[12] * B_13
316 + &k[13] * B_14
317 + &k[14] * B_15)
318 * dt
319 + y;
320 Ok(((&k[0] * D_1
321 + &k[7] * D_8
322 + &k[8] * D_9
323 + &k[9] * D_10
324 + &k[10] * D_11
325 + &k[11] * D_12
326 + &k[12] * D_13
327 + &k[13] * D_14
328 + &k[14] * D_15
329 + &k[15] * D_16)
330 * dt)
331 .norm_inf())
332 }
333 fn step(
334 &self,
335 mut function: impl FnMut(Scalar, &Y) -> Result<Y, String>,
336 y: &mut Y,
337 t: &mut Scalar,
338 y_sol: &mut U,
339 t_sol: &mut Vector,
340 dydt_sol: &mut U,
341 dt: &mut Scalar,
342 _k: &mut [Y],
343 y_trial: &Y,
344 e: Scalar,
345 ) -> Result<(), String> {
346 if e < self.abs_tol || e / y_trial.norm_inf() < self.rel_tol {
347 *t += *dt;
348 *y = y_trial.clone();
349 t_sol.push(*t);
350 y_sol.push(y.clone());
351 dydt_sol.push(function(*t, y)?);
352 }
353 self.time_step(e, dt);
354 Ok(())
355 }
356}
357
358impl<Y, U> InterpolateSolution<Y, U> for Verner9
359where
360 Y: Tensor,
361 for<'a> &'a Y: Mul<Scalar, Output = Y> + Sub<&'a Y, Output = Y>,
362 U: TensorVec<Item = Y>,
363{
364 fn interpolate(
365 &self,
366 time: &Vector,
367 tp: &Vector,
368 yp: &U,
369 mut function: impl FnMut(Scalar, &Y) -> Result<Y, String>,
370 ) -> Result<(U, U), IntegrationError> {
371 let mut dt;
372 let mut i;
373 let mut k_1;
374 let mut k_2;
375 let mut k_3;
376 let mut k_4;
377 let mut k_5;
378 let mut k_6;
379 let mut k_7;
380 let mut k_8;
381 let mut k_9;
382 let mut k_10;
383 let mut k_11;
384 let mut k_12;
385 let mut k_13;
386 let mut k_14;
387 let mut k_15;
388 let mut t;
389 let mut y;
390 let mut y_int = U::new();
391 let mut dydt_int = U::new();
392 let mut y_trial;
393 for time_k in time.iter() {
394 i = tp.iter().position(|tp_i| tp_i >= time_k).unwrap();
395 if time_k == &tp[i] {
396 t = tp[i];
397 y_trial = yp[i].clone();
398 dt = 0.0;
399 } else {
400 t = tp[i - 1];
401 y = yp[i - 1].clone();
402 dt = time_k - t;
403 k_1 = function(t, &y)?;
404 y_trial = &k_1 * (A_2_1 * dt) + &y;
405 k_2 = function(t + C_2 * dt, &y_trial)?;
406 y_trial = &k_1 * (A_3_1 * dt) + &k_2 * (A_3_2 * dt) + &y;
407 k_3 = function(t + C_3 * dt, &y_trial)?;
408 y_trial = &k_1 * (A_4_1 * dt) + &k_3 * (A_4_3 * dt) + &y;
409 k_4 = function(t + C_4 * dt, &y_trial)?;
410 y_trial = &k_1 * (A_5_1 * dt) + &k_3 * (A_5_3 * dt) + &k_4 * (A_5_4 * dt) + &y;
411 k_5 = function(t + C_5 * dt, &y_trial)?;
412 y_trial = &k_1 * (A_6_1 * dt) + &k_4 * (A_6_4 * dt) + &k_5 * (A_6_5 * dt) + &y;
413 k_6 = function(t + C_6 * dt, &y_trial)?;
414 y_trial = &k_1 * (A_7_1 * dt)
415 + &k_4 * (A_7_4 * dt)
416 + &k_5 * (A_7_5 * dt)
417 + &k_6 * (A_7_6 * dt)
418 + &y;
419 k_7 = function(t + C_7 * dt, &y_trial)?;
420 y_trial = &k_1 * (A_8_1 * dt) + &k_6 * (A_8_6 * dt) + &k_7 * (A_8_7 * dt) + &y;
421 k_8 = function(t + C_8 * dt, &y_trial)?;
422 y_trial = &k_1 * (A_9_1 * dt)
423 + &k_6 * (A_9_6 * dt)
424 + &k_7 * (A_9_7 * dt)
425 + &k_8 * (A_9_8 * dt)
426 + &y;
427 k_9 = function(t + C_9 * dt, &y_trial)?;
428 y_trial = &k_1 * (A_10_1 * dt)
429 + &k_6 * (A_10_6 * dt)
430 + &k_7 * (A_10_7 * dt)
431 + &k_8 * (A_10_8 * dt)
432 + &k_9 * (A_10_9 * dt)
433 + &y;
434 k_10 = function(t + C_10 * dt, &y_trial)?;
435 y_trial = &k_1 * (A_11_1 * dt)
436 + &k_6 * (A_11_6 * dt)
437 + &k_7 * (A_11_7 * dt)
438 + &k_8 * (A_11_8 * dt)
439 + &k_9 * (A_11_9 * dt)
440 + &k_10 * (A_11_10 * dt)
441 + &y;
442 k_11 = function(t + C_11 * dt, &y_trial)?;
443 y_trial = &k_1 * (A_12_1 * dt)
444 + &k_6 * (A_12_6 * dt)
445 + &k_7 * (A_12_7 * dt)
446 + &k_8 * (A_12_8 * dt)
447 + &k_9 * (A_12_9 * dt)
448 + &k_10 * (A_12_10 * dt)
449 + &k_11 * (A_12_11 * dt)
450 + &y;
451 k_12 = function(t + C_12 * dt, &y_trial)?;
452 y_trial = &k_1 * (A_13_1 * dt)
453 + &k_6 * (A_13_6 * dt)
454 + &k_7 * (A_13_7 * dt)
455 + &k_8 * (A_13_8 * dt)
456 + &k_9 * (A_13_9 * dt)
457 + &k_10 * (A_13_10 * dt)
458 + &k_11 * (A_13_11 * dt)
459 + &k_12 * (A_13_12 * dt)
460 + &y;
461 k_13 = function(t + C_13 * dt, &y_trial)?;
462 y_trial = &k_1 * (A_14_1 * dt)
463 + &k_6 * (A_14_6 * dt)
464 + &k_7 * (A_14_7 * dt)
465 + &k_8 * (A_14_8 * dt)
466 + &k_9 * (A_14_9 * dt)
467 + &k_10 * (A_14_10 * dt)
468 + &k_11 * (A_14_11 * dt)
469 + &k_12 * (A_14_12 * dt)
470 + &k_13 * (A_14_13 * dt)
471 + &y;
472 k_14 = function(t + C_14 * dt, &y_trial)?;
473 y_trial = &k_1 * (A_15_1 * dt)
474 + &k_6 * (A_15_6 * dt)
475 + &k_7 * (A_15_7 * dt)
476 + &k_8 * (A_15_8 * dt)
477 + &k_9 * (A_15_9 * dt)
478 + &k_10 * (A_15_10 * dt)
479 + &k_11 * (A_15_11 * dt)
480 + &k_12 * (A_15_12 * dt)
481 + &k_13 * (A_15_13 * dt)
482 + &k_14 * (A_15_14 * dt)
483 + &y;
484 k_15 = function(t + dt, &y_trial)?;
485 y_trial = (&k_1 * B_1
486 + &k_8 * B_8
487 + &k_9 * B_9
488 + &k_10 * B_10
489 + &k_11 * B_11
490 + &k_12 * B_12
491 + &k_13 * B_13
492 + &k_14 * B_14
493 + &k_15 * B_15)
494 * dt
495 + &y;
496 }
497 dydt_int.push(function(t + dt, &y_trial)?);
498 y_int.push(y_trial);
499 }
500 Ok((y_int, dydt_int))
501 }
502}