conspire/math/integrate/verner_8/
mod.rs1#[cfg(test)]
2mod test;
3
4use super::{
5 super::{Tensor, TensorRank0, TensorVec, Vector, interpolate::InterpolateSolution},
6 Explicit, IntegrationError,
7};
8use crate::{ABS_TOL, REL_TOL};
9use std::ops::{Mul, Sub};
10
11const C_2: TensorRank0 = 0.05;
12const C_3: TensorRank0 = 0.1065625;
13const C_4: TensorRank0 = 0.15984375;
14const C_5: TensorRank0 = 0.39;
15const C_6: TensorRank0 = 0.465;
16const C_7: TensorRank0 = 0.155;
17const C_8: TensorRank0 = 0.943;
18const C_9: TensorRank0 = 0.901802041735857;
19const C_10: TensorRank0 = 0.909;
20const C_11: TensorRank0 = 0.94;
21
22const A_2_1: TensorRank0 = 0.05;
23const A_3_1: TensorRank0 = -0.0069931640625;
24const A_3_2: TensorRank0 = 0.1135556640625;
25const A_4_1: TensorRank0 = 0.0399609375;
26const A_4_3: TensorRank0 = 0.1198828125;
27const A_5_1: TensorRank0 = 0.36139756280045754;
28const A_5_3: TensorRank0 = -1.3415240667004928;
29const A_5_4: TensorRank0 = 1.3701265039000352;
30const A_6_1: TensorRank0 = 0.049047202797202795;
31const A_6_4: TensorRank0 = 0.23509720422144048;
32const A_6_5: TensorRank0 = 0.18085559298135673;
33const A_7_1: TensorRank0 = 0.06169289044289044;
34const A_7_4: TensorRank0 = 0.11236568314640277;
35const A_7_5: TensorRank0 = -0.03885046071451367;
36const A_7_6: TensorRank0 = 0.01979188712522046;
37const A_8_1: TensorRank0 = -1.767630240222327;
38const A_8_4: TensorRank0 = -62.5;
39const A_8_5: TensorRank0 = -6.061889377376669;
40const A_8_6: TensorRank0 = 5.6508231982227635;
41const A_8_7: TensorRank0 = 65.62169641937624;
42const A_9_1: TensorRank0 = -1.1809450665549708;
43const A_9_4: TensorRank0 = -41.50473441114321;
44const A_9_5: TensorRank0 = -4.434438319103725;
45const A_9_6: TensorRank0 = 4.260408188586133;
46const A_9_7: TensorRank0 = 43.75364022446172;
47const A_9_8: TensorRank0 = 0.00787142548991231;
48const A_10_1: TensorRank0 = -1.2814059994414884;
49const A_10_4: TensorRank0 = -45.047139960139866;
50const A_10_5: TensorRank0 = -4.731362069449576;
51const A_10_6: TensorRank0 = 4.514967016593808;
52const A_10_7: TensorRank0 = 47.44909557172985;
53const A_10_8: TensorRank0 = 0.01059228297111661;
54const A_10_9: TensorRank0 = -0.0057468422638446166;
55const A_11_1: TensorRank0 = -1.7244701342624853;
56const A_11_4: TensorRank0 = -60.92349008483054;
57const A_11_5: TensorRank0 = -5.951518376222392;
58const A_11_6: TensorRank0 = 5.556523730698456;
59const A_11_7: TensorRank0 = 63.98301198033305;
60const A_11_8: TensorRank0 = 0.014642028250414961;
61const A_11_9: TensorRank0 = 0.06460408772358203;
62const A_11_10: TensorRank0 = -0.0793032316900888;
63const A_12_1: TensorRank0 = -3.301622667747079;
64const A_12_4: TensorRank0 = -118.01127235975251;
65const A_12_5: TensorRank0 = -10.141422388456112;
66const A_12_6: TensorRank0 = 9.139311332232058;
67const A_12_7: TensorRank0 = 123.37594282840426;
68const A_12_8: TensorRank0 = 4.62324437887458;
69const A_12_9: TensorRank0 = -3.3832777380682018;
70const A_12_10: TensorRank0 = 4.527592100324618;
71const A_12_11: TensorRank0 = -5.828495485811623;
72const A_13_1: TensorRank0 = -3.039515033766309;
73const A_13_4: TensorRank0 = -109.26086808941763;
74const A_13_5: TensorRank0 = -9.290642497400293;
75const A_13_6: TensorRank0 = 8.43050498176491;
76const A_13_7: TensorRank0 = 114.20100103783314;
77const A_13_8: TensorRank0 = -0.9637271342145479;
78const A_13_9: TensorRank0 = -5.0348840888021895;
79const A_13_10: TensorRank0 = 5.958130824002923;
80
81const B_1: TensorRank0 = 0.04427989419007951;
82const B_6: TensorRank0 = 0.3541049391724449;
83const B_7: TensorRank0 = 0.24796921549564377;
84const B_8: TensorRank0 = -15.694202038838085;
85const B_9: TensorRank0 = 25.084064965558564;
86const B_10: TensorRank0 = -31.738367786260277;
87const B_11: TensorRank0 = 22.938283273988784;
88const B_12: TensorRank0 = -0.2361324633071542;
89
90const D_1: TensorRank0 = -0.00003272103901028138;
91const D_6: TensorRank0 = -0.0005046250618777704;
92const D_7: TensorRank0 = 0.0001211723589784759;
93const D_8: TensorRank0 = -20.142336771313868;
94const D_9: TensorRank0 = 5.2371785994398286;
95const D_10: TensorRank0 = -8.156744408794658;
96const D_11: TensorRank0 = 22.938283273988784;
97const D_12: TensorRank0 = -0.2361324633071542;
98const D_13: TensorRank0 = 0.36016794372897754;
99
100#[derive(Debug)]
120pub struct Verner8 {
121 pub abs_tol: TensorRank0,
123 pub rel_tol: TensorRank0,
125 pub dt_beta: TensorRank0,
127 pub dt_expn: TensorRank0,
129}
130
131impl Default for Verner8 {
132 fn default() -> Self {
133 Self {
134 abs_tol: ABS_TOL,
135 rel_tol: REL_TOL,
136 dt_beta: 0.9,
137 dt_expn: 8.0,
138 }
139 }
140}
141
142impl<Y, U> Explicit<Y, U> for Verner8
143where
144 Self: InterpolateSolution<Y, U>,
145 Y: Tensor,
146 for<'a> &'a Y: Mul<TensorRank0, Output = Y> + Sub<&'a Y, Output = Y>,
147 U: TensorVec<Item = Y>,
148{
149 fn integrate(
150 &self,
151 mut function: impl FnMut(TensorRank0, &Y) -> Result<Y, IntegrationError>,
152 time: &[TensorRank0],
153 initial_condition: Y,
154 ) -> Result<(Vector, U, U), IntegrationError> {
155 let t_0 = time[0];
156 let t_f = time[time.len() - 1];
157 if time.len() < 2 {
158 return Err(IntegrationError::LengthTimeLessThanTwo);
159 } else if t_0 >= t_f {
160 return Err(IntegrationError::InitialTimeNotLessThanFinalTime);
161 }
162 let mut t = t_0;
163 let mut dt = t_f;
164 let mut e;
165 let mut k_1 = function(t, &initial_condition)?;
166 let mut k_2;
167 let mut k_3;
168 let mut k_4;
169 let mut k_5;
170 let mut k_6;
171 let mut k_7;
172 let mut k_8;
173 let mut k_9;
174 let mut k_10;
175 let mut k_11;
176 let mut k_12;
177 let mut k_13;
178 let mut t_sol = Vector::zero(0);
179 t_sol.push(t_0);
180 let mut y = initial_condition.clone();
181 let mut y_sol = U::zero(0);
182 y_sol.push(initial_condition.clone());
183 let mut dydt_sol = U::zero(0);
184 dydt_sol.push(k_1.clone());
185 let mut y_trial;
186 while t < t_f {
187 k_1 = function(t, &y)?;
188 k_2 = function(t + C_2 * dt, &(&k_1 * (A_2_1 * dt) + &y))?;
189 k_3 = function(
190 t + C_3 * dt,
191 &(&k_1 * (A_3_1 * dt) + &k_2 * (A_3_2 * dt) + &y),
192 )?;
193 k_4 = function(
194 t + C_4 * dt,
195 &(&k_1 * (A_4_1 * dt) + &k_3 * (A_4_3 * dt) + &y),
196 )?;
197 k_5 = function(
198 t + C_5 * dt,
199 &(&k_1 * (A_5_1 * dt) + &k_3 * (A_5_3 * dt) + &k_4 * (A_5_4 * dt) + &y),
200 )?;
201 k_6 = function(
202 t + C_6 * dt,
203 &(&k_1 * (A_6_1 * dt) + &k_4 * (A_6_4 * dt) + &k_5 * (A_6_5 * dt) + &y),
204 )?;
205 k_7 = function(
206 t + C_7 * dt,
207 &(&k_1 * (A_7_1 * dt)
208 + &k_4 * (A_7_4 * dt)
209 + &k_5 * (A_7_5 * dt)
210 + &k_6 * (A_7_6 * dt)
211 + &y),
212 )?;
213 k_8 = function(
214 t + C_8 * dt,
215 &(&k_1 * (A_8_1 * dt)
216 + &k_4 * (A_8_4 * dt)
217 + &k_5 * (A_8_5 * dt)
218 + &k_6 * (A_8_6 * dt)
219 + &k_7 * (A_8_7 * dt)
220 + &y),
221 )?;
222 k_9 = function(
223 t + C_9 * dt,
224 &(&k_1 * (A_9_1 * dt)
225 + &k_4 * (A_9_4 * dt)
226 + &k_5 * (A_9_5 * dt)
227 + &k_6 * (A_9_6 * dt)
228 + &k_7 * (A_9_7 * dt)
229 + &k_8 * (A_9_8 * dt)
230 + &y),
231 )?;
232 k_10 = function(
233 t + C_10 * dt,
234 &(&k_1 * (A_10_1 * dt)
235 + &k_4 * (A_10_4 * dt)
236 + &k_5 * (A_10_5 * dt)
237 + &k_6 * (A_10_6 * dt)
238 + &k_7 * (A_10_7 * dt)
239 + &k_8 * (A_10_8 * dt)
240 + &k_9 * (A_10_9 * dt)
241 + &y),
242 )?;
243 k_11 = function(
244 t + C_11 * dt,
245 &(&k_1 * (A_11_1 * dt)
246 + &k_4 * (A_11_4 * dt)
247 + &k_5 * (A_11_5 * dt)
248 + &k_6 * (A_11_6 * dt)
249 + &k_7 * (A_11_7 * dt)
250 + &k_8 * (A_11_8 * dt)
251 + &k_9 * (A_11_9 * dt)
252 + &k_10 * (A_11_10 * dt)
253 + &y),
254 )?;
255 k_12 = function(
256 t + dt,
257 &(&k_1 * (A_12_1 * dt)
258 + &k_4 * (A_12_4 * dt)
259 + &k_5 * (A_12_5 * dt)
260 + &k_6 * (A_12_6 * dt)
261 + &k_7 * (A_12_7 * dt)
262 + &k_8 * (A_12_8 * dt)
263 + &k_9 * (A_12_9 * dt)
264 + &k_10 * (A_12_10 * dt)
265 + &k_11 * (A_12_11 * dt)
266 + &y),
267 )?;
268 y_trial = (&k_1 * B_1
269 + &k_6 * B_6
270 + &k_7 * B_7
271 + &k_8 * B_8
272 + &k_9 * B_9
273 + &k_10 * B_10
274 + &k_11 * B_11
275 + &k_12 * B_12)
276 * dt
277 + &y;
278 k_13 = function(
279 t + dt,
280 &(&k_1 * (A_13_1 * dt)
281 + &k_4 * (A_13_4 * dt)
282 + &k_5 * (A_13_5 * dt)
283 + &k_6 * (A_13_6 * dt)
284 + &k_7 * (A_13_7 * dt)
285 + &k_8 * (A_13_8 * dt)
286 + &k_9 * (A_13_9 * dt)
287 + &k_10 * (A_13_10 * dt)
288 + &y),
289 )?;
290 e = ((&k_1 * D_1
291 + &k_6 * D_6
292 + &k_7 * D_7
293 + &k_8 * D_8
294 + &k_9 * D_9
295 + &k_10 * D_10
296 + &k_11 * D_11
297 + &k_12 * D_12
298 + &k_13 * D_13)
299 * dt)
300 .norm_inf();
301 if e < self.abs_tol || e / y_trial.norm_inf() < self.rel_tol {
302 t += dt;
303 y = y_trial;
304 t_sol.push(t);
305 y_sol.push(y.clone());
306 dydt_sol.push(function(t, &y)?);
307 }
308 if e > 0.0 {
309 dt *= self.dt_beta * (self.abs_tol / e).powf(1.0 / self.dt_expn)
310 }
311 dt = dt.min(t_f - t)
312 }
313 if time.len() > 2 {
314 let t_int = Vector::new(time);
315 let (y_int, dydt_int) = self.interpolate(&t_int, &t_sol, &y_sol, function)?;
316 Ok((t_int, y_int, dydt_int))
317 } else {
318 Ok((t_sol, y_sol, dydt_sol))
319 }
320 }
321}
322
323impl<Y, U> InterpolateSolution<Y, U> for Verner8
324where
325 Y: Tensor,
326 for<'a> &'a Y: Mul<TensorRank0, Output = Y> + Sub<&'a Y, Output = Y>,
327 U: TensorVec<Item = Y>,
328{
329 fn interpolate(
330 &self,
331 time: &Vector,
332 tp: &Vector,
333 yp: &U,
334 mut function: impl FnMut(TensorRank0, &Y) -> Result<Y, IntegrationError>,
335 ) -> Result<(U, U), IntegrationError> {
336 let mut dt;
337 let mut i;
338 let mut k_1;
339 let mut k_2;
340 let mut k_3;
341 let mut k_4;
342 let mut k_5;
343 let mut k_6;
344 let mut k_7;
345 let mut k_8;
346 let mut k_9;
347 let mut k_10;
348 let mut k_11;
349 let mut k_12;
350 let mut t;
351 let mut y;
352 let mut y_int = U::zero(0);
353 let mut dydt_int = U::zero(0);
354 let mut y_trial;
355 for time_k in time.iter() {
356 i = tp.iter().position(|tp_i| tp_i >= time_k).unwrap();
357 if time_k == &tp[i] {
358 t = tp[i];
359 y_trial = yp[i].clone();
360 dt = 0.0;
361 } else {
362 t = tp[i - 1];
363 y = yp[i - 1].clone();
364 dt = time_k - t;
365 k_1 = function(t, &y)?;
366 k_2 = function(t + C_2 * dt, &(&k_1 * (A_2_1 * dt) + &y))?;
367 k_3 = function(
368 t + C_3 * dt,
369 &(&k_1 * (A_3_1 * dt) + &k_2 * (A_3_2 * dt) + &y),
370 )?;
371 k_4 = function(
372 t + C_4 * dt,
373 &(&k_1 * (A_4_1 * dt) + &k_3 * (A_4_3 * dt) + &y),
374 )?;
375 k_5 = function(
376 t + C_5 * dt,
377 &(&k_1 * (A_5_1 * dt) + &k_3 * (A_5_3 * dt) + &k_4 * (A_5_4 * dt) + &y),
378 )?;
379 k_6 = function(
380 t + C_6 * dt,
381 &(&k_1 * (A_6_1 * dt) + &k_4 * (A_6_4 * dt) + &k_5 * (A_6_5 * dt) + &y),
382 )?;
383 k_7 = function(
384 t + C_7 * dt,
385 &(&k_1 * (A_7_1 * dt)
386 + &k_4 * (A_7_4 * dt)
387 + &k_5 * (A_7_5 * dt)
388 + &k_6 * (A_7_6 * dt)
389 + &y),
390 )?;
391 k_8 = function(
392 t + C_8 * dt,
393 &(&k_1 * (A_8_1 * dt)
394 + &k_4 * (A_8_4 * dt)
395 + &k_5 * (A_8_5 * dt)
396 + &k_6 * (A_8_6 * dt)
397 + &k_7 * (A_8_7 * dt)
398 + &y),
399 )?;
400 k_9 = function(
401 t + C_9 * dt,
402 &(&k_1 * (A_9_1 * dt)
403 + &k_4 * (A_9_4 * dt)
404 + &k_5 * (A_9_5 * dt)
405 + &k_6 * (A_9_6 * dt)
406 + &k_7 * (A_9_7 * dt)
407 + &k_8 * (A_9_8 * dt)
408 + &y),
409 )?;
410 k_10 = function(
411 t + C_10 * dt,
412 &(&k_1 * (A_10_1 * dt)
413 + &k_4 * (A_10_4 * dt)
414 + &k_5 * (A_10_5 * dt)
415 + &k_6 * (A_10_6 * dt)
416 + &k_7 * (A_10_7 * dt)
417 + &k_8 * (A_10_8 * dt)
418 + &k_9 * (A_10_9 * dt)
419 + &y),
420 )?;
421 k_11 = function(
422 t + C_11 * dt,
423 &(&k_1 * (A_11_1 * dt)
424 + &k_4 * (A_11_4 * dt)
425 + &k_5 * (A_11_5 * dt)
426 + &k_6 * (A_11_6 * dt)
427 + &k_7 * (A_11_7 * dt)
428 + &k_8 * (A_11_8 * dt)
429 + &k_9 * (A_11_9 * dt)
430 + &k_10 * (A_11_10 * dt)
431 + &y),
432 )?;
433 k_12 = function(
434 t + dt,
435 &(&k_1 * (A_12_1 * dt)
436 + &k_4 * (A_12_4 * dt)
437 + &k_5 * (A_12_5 * dt)
438 + &k_6 * (A_12_6 * dt)
439 + &k_7 * (A_12_7 * dt)
440 + &k_8 * (A_12_8 * dt)
441 + &k_9 * (A_12_9 * dt)
442 + &k_10 * (A_12_10 * dt)
443 + &k_11 * (A_12_11 * dt)
444 + &y),
445 )?;
446 y_trial = (&k_1 * B_1
447 + &k_6 * B_6
448 + &k_7 * B_7
449 + &k_8 * B_8
450 + &k_9 * B_9
451 + &k_10 * B_10
452 + &k_11 * B_11
453 + &k_12 * B_12)
454 * dt
455 + &y;
456 }
457 dydt_int.push(function(t + dt, &y_trial)?);
458 y_int.push(y_trial);
459 }
460 Ok((y_int, dydt_int))
461 }
462}