conspire/math/integrate/verner_9/
mod.rs

1#[cfg(test)]
2mod test;
3
4use super::{
5    super::{Scalar, Tensor, TensorVec, Vector, interpolate::InterpolateSolution},
6    Explicit, IntegrationError,
7};
8use crate::{ABS_TOL, REL_TOL};
9use std::ops::{Mul, Sub};
10
11const C_2: Scalar = 0.03462;
12const C_3: Scalar = 0.097_024_350_638_780_44;
13const C_4: Scalar = 0.145_536_525_958_170_67;
14const C_5: Scalar = 0.561;
15const C_6: Scalar = 0.229_007_911_590_485;
16const C_7: Scalar = 0.544_992_088_409_515;
17const C_8: Scalar = 0.645;
18const C_9: Scalar = 0.48375;
19const C_10: Scalar = 0.06757;
20const C_11: Scalar = 0.2500;
21const C_12: Scalar = 0.659_065_061_873_099_9;
22const C_13: Scalar = 0.8206;
23const C_14: Scalar = 0.9012;
24
25const A_2_1: Scalar = 0.03462;
26const A_3_1: Scalar = -0.03893354388572875;
27const A_3_2: Scalar = 0.13595789452450918;
28const A_4_1: Scalar = 0.03638413148954267;
29const A_4_3: Scalar = 0.10915239446862801;
30const A_5_1: Scalar = 2.0257639143939694;
31const A_5_3: Scalar = -7.638023836496291;
32const A_5_4: Scalar = 6.173259922102322;
33const A_6_1: Scalar = 0.05112275589406061;
34const A_6_4: Scalar = 0.17708237945550218;
35const A_6_5: Scalar = 0.0008027762409222536;
36const A_7_1: Scalar = 0.13160063579752163;
37const A_7_4: Scalar = -0.2957276252669636;
38const A_7_5: Scalar = 0.08781378035642955;
39const A_7_6: Scalar = 0.6213052975225274;
40const A_8_1: Scalar = 0.07166666666666667;
41const A_8_6: Scalar = 0.33055335789153195;
42const A_8_7: Scalar = 0.2427799754418014;
43const A_9_1: Scalar = 0.071806640625;
44const A_9_6: Scalar = 0.3294380283228177;
45const A_9_7: Scalar = 0.1165190029271823;
46const A_9_8: Scalar = -0.034013671875;
47const A_10_1: Scalar = 0.04836757646340646;
48const A_10_6: Scalar = 0.03928989925676164;
49const A_10_7: Scalar = 0.10547409458903446;
50const A_10_8: Scalar = -0.021438652846483126;
51const A_10_9: Scalar = -0.10412291746271944;
52const A_11_1: Scalar = -0.026645614872014785;
53const A_11_6: Scalar = 0.03333333333333333;
54const A_11_7: Scalar = -0.1631072244872467;
55const A_11_8: Scalar = 0.03396081684127761;
56const A_11_9: Scalar = 0.1572319413814626;
57const A_11_10: Scalar = 0.21522674780318796;
58const A_12_1: Scalar = 0.03689009248708622;
59const A_12_6: Scalar = -0.1465181576725543;
60const A_12_7: Scalar = 0.2242577768172024;
61const A_12_8: Scalar = 0.02294405717066073;
62const A_12_9: Scalar = -0.0035850052905728597;
63const A_12_10: Scalar = 0.08669223316444385;
64const A_12_11: Scalar = 0.43838406519683376;
65const A_13_1: Scalar = -0.4866012215113341;
66const A_13_6: Scalar = -6.304602650282853;
67const A_13_7: Scalar = -0.2812456182894729;
68const A_13_8: Scalar = -2.679019236219849;
69const A_13_9: Scalar = 0.5188156639241577;
70const A_13_10: Scalar = 1.3653531876033418;
71const A_13_11: Scalar = 5.8850910885039465;
72const A_13_12: Scalar = 2.8028087862720628;
73const A_14_1: Scalar = 0.4185367457753472;
74const A_14_6: Scalar = 6.724547581906459;
75const A_14_7: Scalar = -0.42544428016461133;
76const A_14_8: Scalar = 3.3432791530012653;
77const A_14_9: Scalar = 0.6170816631175374;
78const A_14_10: Scalar = -0.9299661239399329;
79const A_14_11: Scalar = -6.099948804751011;
80const A_14_12: Scalar = -3.002206187889399;
81const A_14_13: Scalar = 0.2553202529443446;
82const A_15_1: Scalar = -0.7793740861228848;
83const A_15_6: Scalar = -13.937342538107776;
84const A_15_7: Scalar = 1.2520488533793563;
85const A_15_8: Scalar = -14.691500408016868;
86const A_15_9: Scalar = -0.494705058533141;
87const A_15_10: Scalar = 2.2429749091462368;
88const A_15_11: Scalar = 13.367893803828643;
89const A_15_12: Scalar = 14.396650486650687;
90const A_15_13: Scalar = -0.79758133317768;
91const A_15_14: Scalar = 0.4409353709534278;
92const A_16_1: Scalar = 2.0580513374668867;
93const A_16_6: Scalar = 22.357937727968032;
94const A_16_7: Scalar = 0.9094981099755646;
95const A_16_8: Scalar = 35.89110098240264;
96const A_16_9: Scalar = -3.442515027624454;
97const A_16_10: Scalar = -4.865481358036369;
98const A_16_11: Scalar = -18.909803813543427;
99const A_16_12: Scalar = -34.26354448030452;
100const A_16_13: Scalar = 1.2647565216956427;
101
102const B_1: Scalar = 0.014611976858423152;
103const B_8: Scalar = -0.3915211862331339;
104const B_9: Scalar = 0.23109325002895065;
105const B_10: Scalar = 0.12747667699928525;
106const B_11: Scalar = 0.2246434176204158;
107const B_12: Scalar = 0.5684352689748513;
108const B_13: Scalar = 0.058258715572158275;
109const B_14: Scalar = 0.13643174034822156;
110const B_15: Scalar = 0.030570139830827976;
111
112const D_1: Scalar = -0.005357988290444578;
113const D_8: Scalar = -2.583020491182464;
114const D_9: Scalar = 0.14252253154686625;
115const D_10: Scalar = 0.013420653512688676;
116const D_11: Scalar = -0.02867296291409493;
117const D_12: Scalar = 2.624999655215792;
118const D_13: Scalar = -0.2825509643291537;
119const D_14: Scalar = 0.13643174034822156;
120const D_15: Scalar = 0.030570139830827976;
121const D_16: Scalar = -0.04834231373823958;
122
123/// Explicit, sixteen-stage, ninth-order, variable-step, Runge-Kutta method.[^cite]
124///
125/// [^cite]: J.H. Verner, [Numer. Algor. **53**, 383 (2010)](https://doi.org/10.1007/s11075-009-9290-3).
126///
127/// ```math
128/// \frac{dy}{dt} = f(t, y)
129/// ```
130/// ```math
131/// t_{n+1} = t_n + h
132/// ```
133/// ```math
134/// k_1 = f(t_n, y_n)
135/// ```
136/// ```math
137/// \cdots
138/// ```
139/// ```math
140/// h_{n+1} = \beta h \left(\frac{e_\mathrm{tol}}{e_{n+1}}\right)^{1/p}
141/// ```
142
143#[derive(Debug)]
144pub struct Verner9 {
145    /// Absolute error tolerance.
146    pub abs_tol: Scalar,
147    /// Relative error tolerance.
148    pub rel_tol: Scalar,
149    /// Multiplier for adaptive time steps.
150    pub dt_beta: Scalar,
151    /// Exponent for adaptive time steps.
152    pub dt_expn: Scalar,
153}
154
155impl Default for Verner9 {
156    fn default() -> Self {
157        Self {
158            abs_tol: ABS_TOL,
159            rel_tol: REL_TOL,
160            dt_beta: 0.9,
161            dt_expn: 9.0,
162        }
163    }
164}
165
166impl<Y, U> Explicit<Y, U> for Verner9
167where
168    Self: InterpolateSolution<Y, U>,
169    Y: Tensor,
170    for<'a> &'a Y: Mul<Scalar, Output = Y> + Sub<&'a Y, Output = Y>,
171    U: TensorVec<Item = Y>,
172{
173    const SLOPES: usize = 16;
174    fn slopes(
175        &self,
176        mut function: impl FnMut(Scalar, &Y) -> Result<Y, String>,
177        y: &Y,
178        t: &Scalar,
179        dt: &Scalar,
180        k: &mut [Y],
181        y_trial: &mut Y,
182    ) -> Result<Scalar, String> {
183        k[0] = function(*t, y)?;
184        k[1] = function(t + C_2 * dt, &(&k[0] * (A_2_1 * dt) + y))?;
185        k[2] = function(
186            t + C_3 * dt,
187            &(&k[0] * (A_3_1 * dt) + &k[1] * (A_3_2 * dt) + y),
188        )?;
189        k[3] = function(
190            t + C_4 * dt,
191            &(&k[0] * (A_4_1 * dt) + &k[2] * (A_4_3 * dt) + y),
192        )?;
193        k[4] = function(
194            t + C_5 * dt,
195            &(&k[0] * (A_5_1 * dt) + &k[2] * (A_5_3 * dt) + &k[3] * (A_5_4 * dt) + y),
196        )?;
197        k[5] = function(
198            t + C_6 * dt,
199            &(&k[0] * (A_6_1 * dt) + &k[3] * (A_6_4 * dt) + &k[4] * (A_6_5 * dt) + y),
200        )?;
201        k[6] = function(
202            t + C_7 * dt,
203            &(&k[0] * (A_7_1 * dt)
204                + &k[3] * (A_7_4 * dt)
205                + &k[4] * (A_7_5 * dt)
206                + &k[5] * (A_7_6 * dt)
207                + y),
208        )?;
209        k[7] = function(
210            t + C_8 * dt,
211            &(&k[0] * (A_8_1 * dt) + &k[5] * (A_8_6 * dt) + &k[6] * (A_8_7 * dt) + y),
212        )?;
213        k[8] = function(
214            t + C_9 * dt,
215            &(&k[0] * (A_9_1 * dt)
216                + &k[5] * (A_9_6 * dt)
217                + &k[6] * (A_9_7 * dt)
218                + &k[7] * (A_9_8 * dt)
219                + y),
220        )?;
221        k[9] = function(
222            t + C_10 * dt,
223            &(&k[0] * (A_10_1 * dt)
224                + &k[5] * (A_10_6 * dt)
225                + &k[6] * (A_10_7 * dt)
226                + &k[7] * (A_10_8 * dt)
227                + &k[8] * (A_10_9 * dt)
228                + y),
229        )?;
230        k[10] = function(
231            t + C_11 * dt,
232            &(&k[0] * (A_11_1 * dt)
233                + &k[5] * (A_11_6 * dt)
234                + &k[6] * (A_11_7 * dt)
235                + &k[7] * (A_11_8 * dt)
236                + &k[8] * (A_11_9 * dt)
237                + &k[9] * (A_11_10 * dt)
238                + y),
239        )?;
240        k[11] = function(
241            t + C_12 * dt,
242            &(&k[0] * (A_12_1 * dt)
243                + &k[5] * (A_12_6 * dt)
244                + &k[6] * (A_12_7 * dt)
245                + &k[7] * (A_12_8 * dt)
246                + &k[8] * (A_12_9 * dt)
247                + &k[9] * (A_12_10 * dt)
248                + &k[10] * (A_12_11 * dt)
249                + y),
250        )?;
251        k[12] = function(
252            t + C_13 * dt,
253            &(&k[0] * (A_13_1 * dt)
254                + &k[5] * (A_13_6 * dt)
255                + &k[6] * (A_13_7 * dt)
256                + &k[7] * (A_13_8 * dt)
257                + &k[8] * (A_13_9 * dt)
258                + &k[9] * (A_13_10 * dt)
259                + &k[10] * (A_13_11 * dt)
260                + &k[11] * (A_13_12 * dt)
261                + y),
262        )?;
263        k[13] = function(
264            t + C_14 * dt,
265            &(&k[0] * (A_14_1 * dt)
266                + &k[5] * (A_14_6 * dt)
267                + &k[6] * (A_14_7 * dt)
268                + &k[7] * (A_14_8 * dt)
269                + &k[8] * (A_14_9 * dt)
270                + &k[9] * (A_14_10 * dt)
271                + &k[10] * (A_14_11 * dt)
272                + &k[11] * (A_14_12 * dt)
273                + &k[12] * (A_14_13 * dt)
274                + y),
275        )?;
276        k[14] = function(
277            t + dt,
278            &(&k[0] * (A_15_1 * dt)
279                + &k[5] * (A_15_6 * dt)
280                + &k[6] * (A_15_7 * dt)
281                + &k[7] * (A_15_8 * dt)
282                + &k[8] * (A_15_9 * dt)
283                + &k[9] * (A_15_10 * dt)
284                + &k[10] * (A_15_11 * dt)
285                + &k[11] * (A_15_12 * dt)
286                + &k[12] * (A_15_13 * dt)
287                + &k[13] * (A_15_14 * dt)
288                + y),
289        )?;
290        *y_trial = (&k[0] * B_1
291            + &k[7] * B_8
292            + &k[8] * B_9
293            + &k[9] * B_10
294            + &k[10] * B_11
295            + &k[11] * B_12
296            + &k[12] * B_13
297            + &k[13] * B_14
298            + &k[14] * B_15)
299            * *dt
300            + y;
301        k[15] = function(
302            t + dt,
303            &(&k[0] * (A_16_1 * dt)
304                + &k[5] * (A_16_6 * dt)
305                + &k[6] * (A_16_7 * dt)
306                + &k[7] * (A_16_8 * dt)
307                + &k[8] * (A_16_9 * dt)
308                + &k[9] * (A_16_10 * dt)
309                + &k[10] * (A_16_11 * dt)
310                + &k[11] * (A_16_12 * dt)
311                + &k[12] * (A_16_13 * dt)
312                + y),
313        )?;
314        Ok(((&k[0] * D_1
315            + &k[7] * D_8
316            + &k[8] * D_9
317            + &k[9] * D_10
318            + &k[10] * D_11
319            + &k[11] * D_12
320            + &k[12] * D_13
321            + &k[13] * D_14
322            + &k[14] * D_15
323            + &k[15] * D_16)
324            * *dt)
325            .norm_inf())
326    }
327    fn step(
328        &self,
329        mut function: impl FnMut(Scalar, &Y) -> Result<Y, String>,
330        y: &mut Y,
331        t: &mut Scalar,
332        y_sol: &mut U,
333        t_sol: &mut Vector,
334        dydt_sol: &mut U,
335        dt: &mut Scalar,
336        _k: &mut [Y],
337        y_trial: &Y,
338        e: &Scalar,
339    ) -> Result<(), String> {
340        if e < &self.abs_tol || e / y_trial.norm_inf() < self.rel_tol {
341            *t += *dt;
342            *y = y_trial.clone();
343            t_sol.push(*t);
344            y_sol.push(y.clone());
345            dydt_sol.push(function(*t, y)?);
346        }
347        if e > &0.0 {
348            *dt *= self.dt_beta * (self.abs_tol / e).powf(1.0 / self.dt_expn)
349        }
350        Ok(())
351    }
352}
353
354impl<Y, U> InterpolateSolution<Y, U> for Verner9
355where
356    Y: Tensor,
357    for<'a> &'a Y: Mul<Scalar, Output = Y> + Sub<&'a Y, Output = Y>,
358    U: TensorVec<Item = Y>,
359{
360    fn interpolate(
361        &self,
362        time: &Vector,
363        tp: &Vector,
364        yp: &U,
365        mut function: impl FnMut(Scalar, &Y) -> Result<Y, String>,
366    ) -> Result<(U, U), IntegrationError> {
367        let mut dt;
368        let mut i;
369        let mut k_1;
370        let mut k_2;
371        let mut k_3;
372        let mut k_4;
373        let mut k_5;
374        let mut k_6;
375        let mut k_7;
376        let mut k_8;
377        let mut k_9;
378        let mut k_10;
379        let mut k_11;
380        let mut k_12;
381        let mut k_13;
382        let mut k_14;
383        let mut k_15;
384        let mut t;
385        let mut y;
386        let mut y_int = U::new();
387        let mut dydt_int = U::new();
388        let mut y_trial;
389        for time_k in time.iter() {
390            i = tp.iter().position(|tp_i| tp_i >= time_k).unwrap();
391            if time_k == &tp[i] {
392                t = tp[i];
393                y_trial = yp[i].clone();
394                dt = 0.0;
395            } else {
396                t = tp[i - 1];
397                y = yp[i - 1].clone();
398                dt = time_k - t;
399                k_1 = function(t, &y)?;
400                k_2 = function(t + C_2 * dt, &(&k_1 * (A_2_1 * dt) + &y))?;
401                k_3 = function(
402                    t + C_3 * dt,
403                    &(&k_1 * (A_3_1 * dt) + &k_2 * (A_3_2 * dt) + &y),
404                )?;
405                k_4 = function(
406                    t + C_4 * dt,
407                    &(&k_1 * (A_4_1 * dt) + &k_3 * (A_4_3 * dt) + &y),
408                )?;
409                k_5 = function(
410                    t + C_5 * dt,
411                    &(&k_1 * (A_5_1 * dt) + &k_3 * (A_5_3 * dt) + &k_4 * (A_5_4 * dt) + &y),
412                )?;
413                k_6 = function(
414                    t + C_6 * dt,
415                    &(&k_1 * (A_6_1 * dt) + &k_4 * (A_6_4 * dt) + &k_5 * (A_6_5 * dt) + &y),
416                )?;
417                k_7 = function(
418                    t + C_7 * dt,
419                    &(&k_1 * (A_7_1 * dt)
420                        + &k_4 * (A_7_4 * dt)
421                        + &k_5 * (A_7_5 * dt)
422                        + &k_6 * (A_7_6 * dt)
423                        + &y),
424                )?;
425                k_8 = function(
426                    t + C_8 * dt,
427                    &(&k_1 * (A_8_1 * dt) + &k_6 * (A_8_6 * dt) + &k_7 * (A_8_7 * dt) + &y),
428                )?;
429                k_9 = function(
430                    t + C_9 * dt,
431                    &(&k_1 * (A_9_1 * dt)
432                        + &k_6 * (A_9_6 * dt)
433                        + &k_7 * (A_9_7 * dt)
434                        + &k_8 * (A_9_8 * dt)
435                        + &y),
436                )?;
437                k_10 = function(
438                    t + C_10 * dt,
439                    &(&k_1 * (A_10_1 * dt)
440                        + &k_6 * (A_10_6 * dt)
441                        + &k_7 * (A_10_7 * dt)
442                        + &k_8 * (A_10_8 * dt)
443                        + &k_9 * (A_10_9 * dt)
444                        + &y),
445                )?;
446                k_11 = function(
447                    t + C_11 * dt,
448                    &(&k_1 * (A_11_1 * dt)
449                        + &k_6 * (A_11_6 * dt)
450                        + &k_7 * (A_11_7 * dt)
451                        + &k_8 * (A_11_8 * dt)
452                        + &k_9 * (A_11_9 * dt)
453                        + &k_10 * (A_11_10 * dt)
454                        + &y),
455                )?;
456                k_12 = function(
457                    t + C_12 * dt,
458                    &(&k_1 * (A_12_1 * dt)
459                        + &k_6 * (A_12_6 * dt)
460                        + &k_7 * (A_12_7 * dt)
461                        + &k_8 * (A_12_8 * dt)
462                        + &k_9 * (A_12_9 * dt)
463                        + &k_10 * (A_12_10 * dt)
464                        + &k_11 * (A_12_11 * dt)
465                        + &y),
466                )?;
467                k_13 = function(
468                    t + C_13 * dt,
469                    &(&k_1 * (A_13_1 * dt)
470                        + &k_6 * (A_13_6 * dt)
471                        + &k_7 * (A_13_7 * dt)
472                        + &k_8 * (A_13_8 * dt)
473                        + &k_9 * (A_13_9 * dt)
474                        + &k_10 * (A_13_10 * dt)
475                        + &k_11 * (A_13_11 * dt)
476                        + &k_12 * (A_13_12 * dt)
477                        + &y),
478                )?;
479                k_14 = function(
480                    t + C_14 * dt,
481                    &(&k_1 * (A_14_1 * dt)
482                        + &k_6 * (A_14_6 * dt)
483                        + &k_7 * (A_14_7 * dt)
484                        + &k_8 * (A_14_8 * dt)
485                        + &k_9 * (A_14_9 * dt)
486                        + &k_10 * (A_14_10 * dt)
487                        + &k_11 * (A_14_11 * dt)
488                        + &k_12 * (A_14_12 * dt)
489                        + &k_13 * (A_14_13 * dt)
490                        + &y),
491                )?;
492                k_15 = function(
493                    t + dt,
494                    &(&k_1 * (A_15_1 * dt)
495                        + &k_6 * (A_15_6 * dt)
496                        + &k_7 * (A_15_7 * dt)
497                        + &k_8 * (A_15_8 * dt)
498                        + &k_9 * (A_15_9 * dt)
499                        + &k_10 * (A_15_10 * dt)
500                        + &k_11 * (A_15_11 * dt)
501                        + &k_12 * (A_15_12 * dt)
502                        + &k_13 * (A_15_13 * dt)
503                        + &k_14 * (A_15_14 * dt)
504                        + &y),
505                )?;
506                y_trial = (&k_1 * B_1
507                    + &k_8 * B_8
508                    + &k_9 * B_9
509                    + &k_10 * B_10
510                    + &k_11 * B_11
511                    + &k_12 * B_12
512                    + &k_13 * B_13
513                    + &k_14 * B_14
514                    + &k_15 * B_15)
515                    * dt
516                    + &y;
517            }
518            dydt_int.push(function(t + dt, &y_trial)?);
519            y_int.push(y_trial);
520        }
521        Ok((y_int, dydt_int))
522    }
523}