conspire/math/integrate/verner_9/
mod.rs1#[cfg(test)]
2mod test;
3
4use super::{
5 super::{Scalar, Tensor, TensorVec, Vector, interpolate::InterpolateSolution},
6 Explicit, IntegrationError,
7};
8use crate::{ABS_TOL, REL_TOL};
9use std::ops::{Mul, Sub};
10
11const C_2: Scalar = 0.03462;
12const C_3: Scalar = 0.097_024_350_638_780_44;
13const C_4: Scalar = 0.145_536_525_958_170_67;
14const C_5: Scalar = 0.561;
15const C_6: Scalar = 0.229_007_911_590_485;
16const C_7: Scalar = 0.544_992_088_409_515;
17const C_8: Scalar = 0.645;
18const C_9: Scalar = 0.48375;
19const C_10: Scalar = 0.06757;
20const C_11: Scalar = 0.2500;
21const C_12: Scalar = 0.659_065_061_873_099_9;
22const C_13: Scalar = 0.8206;
23const C_14: Scalar = 0.9012;
24
25const A_2_1: Scalar = 0.03462;
26const A_3_1: Scalar = -0.03893354388572875;
27const A_3_2: Scalar = 0.13595789452450918;
28const A_4_1: Scalar = 0.03638413148954267;
29const A_4_3: Scalar = 0.10915239446862801;
30const A_5_1: Scalar = 2.0257639143939694;
31const A_5_3: Scalar = -7.638023836496291;
32const A_5_4: Scalar = 6.173259922102322;
33const A_6_1: Scalar = 0.05112275589406061;
34const A_6_4: Scalar = 0.17708237945550218;
35const A_6_5: Scalar = 0.0008027762409222536;
36const A_7_1: Scalar = 0.13160063579752163;
37const A_7_4: Scalar = -0.2957276252669636;
38const A_7_5: Scalar = 0.08781378035642955;
39const A_7_6: Scalar = 0.6213052975225274;
40const A_8_1: Scalar = 0.07166666666666667;
41const A_8_6: Scalar = 0.33055335789153195;
42const A_8_7: Scalar = 0.2427799754418014;
43const A_9_1: Scalar = 0.071806640625;
44const A_9_6: Scalar = 0.3294380283228177;
45const A_9_7: Scalar = 0.1165190029271823;
46const A_9_8: Scalar = -0.034013671875;
47const A_10_1: Scalar = 0.04836757646340646;
48const A_10_6: Scalar = 0.03928989925676164;
49const A_10_7: Scalar = 0.10547409458903446;
50const A_10_8: Scalar = -0.021438652846483126;
51const A_10_9: Scalar = -0.10412291746271944;
52const A_11_1: Scalar = -0.026645614872014785;
53const A_11_6: Scalar = 0.03333333333333333;
54const A_11_7: Scalar = -0.1631072244872467;
55const A_11_8: Scalar = 0.03396081684127761;
56const A_11_9: Scalar = 0.1572319413814626;
57const A_11_10: Scalar = 0.21522674780318796;
58const A_12_1: Scalar = 0.03689009248708622;
59const A_12_6: Scalar = -0.1465181576725543;
60const A_12_7: Scalar = 0.2242577768172024;
61const A_12_8: Scalar = 0.02294405717066073;
62const A_12_9: Scalar = -0.0035850052905728597;
63const A_12_10: Scalar = 0.08669223316444385;
64const A_12_11: Scalar = 0.43838406519683376;
65const A_13_1: Scalar = -0.4866012215113341;
66const A_13_6: Scalar = -6.304602650282853;
67const A_13_7: Scalar = -0.2812456182894729;
68const A_13_8: Scalar = -2.679019236219849;
69const A_13_9: Scalar = 0.5188156639241577;
70const A_13_10: Scalar = 1.3653531876033418;
71const A_13_11: Scalar = 5.8850910885039465;
72const A_13_12: Scalar = 2.8028087862720628;
73const A_14_1: Scalar = 0.4185367457753472;
74const A_14_6: Scalar = 6.724547581906459;
75const A_14_7: Scalar = -0.42544428016461133;
76const A_14_8: Scalar = 3.3432791530012653;
77const A_14_9: Scalar = 0.6170816631175374;
78const A_14_10: Scalar = -0.9299661239399329;
79const A_14_11: Scalar = -6.099948804751011;
80const A_14_12: Scalar = -3.002206187889399;
81const A_14_13: Scalar = 0.2553202529443446;
82const A_15_1: Scalar = -0.7793740861228848;
83const A_15_6: Scalar = -13.937342538107776;
84const A_15_7: Scalar = 1.2520488533793563;
85const A_15_8: Scalar = -14.691500408016868;
86const A_15_9: Scalar = -0.494705058533141;
87const A_15_10: Scalar = 2.2429749091462368;
88const A_15_11: Scalar = 13.367893803828643;
89const A_15_12: Scalar = 14.396650486650687;
90const A_15_13: Scalar = -0.79758133317768;
91const A_15_14: Scalar = 0.4409353709534278;
92const A_16_1: Scalar = 2.0580513374668867;
93const A_16_6: Scalar = 22.357937727968032;
94const A_16_7: Scalar = 0.9094981099755646;
95const A_16_8: Scalar = 35.89110098240264;
96const A_16_9: Scalar = -3.442515027624454;
97const A_16_10: Scalar = -4.865481358036369;
98const A_16_11: Scalar = -18.909803813543427;
99const A_16_12: Scalar = -34.26354448030452;
100const A_16_13: Scalar = 1.2647565216956427;
101
102const B_1: Scalar = 0.014611976858423152;
103const B_8: Scalar = -0.3915211862331339;
104const B_9: Scalar = 0.23109325002895065;
105const B_10: Scalar = 0.12747667699928525;
106const B_11: Scalar = 0.2246434176204158;
107const B_12: Scalar = 0.5684352689748513;
108const B_13: Scalar = 0.058258715572158275;
109const B_14: Scalar = 0.13643174034822156;
110const B_15: Scalar = 0.030570139830827976;
111
112const D_1: Scalar = -0.005357988290444578;
113const D_8: Scalar = -2.583020491182464;
114const D_9: Scalar = 0.14252253154686625;
115const D_10: Scalar = 0.013420653512688676;
116const D_11: Scalar = -0.02867296291409493;
117const D_12: Scalar = 2.624999655215792;
118const D_13: Scalar = -0.2825509643291537;
119const D_14: Scalar = 0.13643174034822156;
120const D_15: Scalar = 0.030570139830827976;
121const D_16: Scalar = -0.04834231373823958;
122
123#[derive(Debug)]
144pub struct Verner9 {
145 pub abs_tol: Scalar,
147 pub rel_tol: Scalar,
149 pub dt_beta: Scalar,
151 pub dt_expn: Scalar,
153}
154
155impl Default for Verner9 {
156 fn default() -> Self {
157 Self {
158 abs_tol: ABS_TOL,
159 rel_tol: REL_TOL,
160 dt_beta: 0.9,
161 dt_expn: 9.0,
162 }
163 }
164}
165
166impl<Y, U> Explicit<Y, U> for Verner9
167where
168 Self: InterpolateSolution<Y, U>,
169 Y: Tensor,
170 for<'a> &'a Y: Mul<Scalar, Output = Y> + Sub<&'a Y, Output = Y>,
171 U: TensorVec<Item = Y>,
172{
173 const SLOPES: usize = 16;
174 fn slopes(
175 &self,
176 mut function: impl FnMut(Scalar, &Y) -> Result<Y, String>,
177 y: &Y,
178 t: &Scalar,
179 dt: &Scalar,
180 k: &mut [Y],
181 y_trial: &mut Y,
182 ) -> Result<Scalar, String> {
183 k[0] = function(*t, y)?;
184 k[1] = function(t + C_2 * dt, &(&k[0] * (A_2_1 * dt) + y))?;
185 k[2] = function(
186 t + C_3 * dt,
187 &(&k[0] * (A_3_1 * dt) + &k[1] * (A_3_2 * dt) + y),
188 )?;
189 k[3] = function(
190 t + C_4 * dt,
191 &(&k[0] * (A_4_1 * dt) + &k[2] * (A_4_3 * dt) + y),
192 )?;
193 k[4] = function(
194 t + C_5 * dt,
195 &(&k[0] * (A_5_1 * dt) + &k[2] * (A_5_3 * dt) + &k[3] * (A_5_4 * dt) + y),
196 )?;
197 k[5] = function(
198 t + C_6 * dt,
199 &(&k[0] * (A_6_1 * dt) + &k[3] * (A_6_4 * dt) + &k[4] * (A_6_5 * dt) + y),
200 )?;
201 k[6] = function(
202 t + C_7 * dt,
203 &(&k[0] * (A_7_1 * dt)
204 + &k[3] * (A_7_4 * dt)
205 + &k[4] * (A_7_5 * dt)
206 + &k[5] * (A_7_6 * dt)
207 + y),
208 )?;
209 k[7] = function(
210 t + C_8 * dt,
211 &(&k[0] * (A_8_1 * dt) + &k[5] * (A_8_6 * dt) + &k[6] * (A_8_7 * dt) + y),
212 )?;
213 k[8] = function(
214 t + C_9 * dt,
215 &(&k[0] * (A_9_1 * dt)
216 + &k[5] * (A_9_6 * dt)
217 + &k[6] * (A_9_7 * dt)
218 + &k[7] * (A_9_8 * dt)
219 + y),
220 )?;
221 k[9] = function(
222 t + C_10 * dt,
223 &(&k[0] * (A_10_1 * dt)
224 + &k[5] * (A_10_6 * dt)
225 + &k[6] * (A_10_7 * dt)
226 + &k[7] * (A_10_8 * dt)
227 + &k[8] * (A_10_9 * dt)
228 + y),
229 )?;
230 k[10] = function(
231 t + C_11 * dt,
232 &(&k[0] * (A_11_1 * dt)
233 + &k[5] * (A_11_6 * dt)
234 + &k[6] * (A_11_7 * dt)
235 + &k[7] * (A_11_8 * dt)
236 + &k[8] * (A_11_9 * dt)
237 + &k[9] * (A_11_10 * dt)
238 + y),
239 )?;
240 k[11] = function(
241 t + C_12 * dt,
242 &(&k[0] * (A_12_1 * dt)
243 + &k[5] * (A_12_6 * dt)
244 + &k[6] * (A_12_7 * dt)
245 + &k[7] * (A_12_8 * dt)
246 + &k[8] * (A_12_9 * dt)
247 + &k[9] * (A_12_10 * dt)
248 + &k[10] * (A_12_11 * dt)
249 + y),
250 )?;
251 k[12] = function(
252 t + C_13 * dt,
253 &(&k[0] * (A_13_1 * dt)
254 + &k[5] * (A_13_6 * dt)
255 + &k[6] * (A_13_7 * dt)
256 + &k[7] * (A_13_8 * dt)
257 + &k[8] * (A_13_9 * dt)
258 + &k[9] * (A_13_10 * dt)
259 + &k[10] * (A_13_11 * dt)
260 + &k[11] * (A_13_12 * dt)
261 + y),
262 )?;
263 k[13] = function(
264 t + C_14 * dt,
265 &(&k[0] * (A_14_1 * dt)
266 + &k[5] * (A_14_6 * dt)
267 + &k[6] * (A_14_7 * dt)
268 + &k[7] * (A_14_8 * dt)
269 + &k[8] * (A_14_9 * dt)
270 + &k[9] * (A_14_10 * dt)
271 + &k[10] * (A_14_11 * dt)
272 + &k[11] * (A_14_12 * dt)
273 + &k[12] * (A_14_13 * dt)
274 + y),
275 )?;
276 k[14] = function(
277 t + dt,
278 &(&k[0] * (A_15_1 * dt)
279 + &k[5] * (A_15_6 * dt)
280 + &k[6] * (A_15_7 * dt)
281 + &k[7] * (A_15_8 * dt)
282 + &k[8] * (A_15_9 * dt)
283 + &k[9] * (A_15_10 * dt)
284 + &k[10] * (A_15_11 * dt)
285 + &k[11] * (A_15_12 * dt)
286 + &k[12] * (A_15_13 * dt)
287 + &k[13] * (A_15_14 * dt)
288 + y),
289 )?;
290 *y_trial = (&k[0] * B_1
291 + &k[7] * B_8
292 + &k[8] * B_9
293 + &k[9] * B_10
294 + &k[10] * B_11
295 + &k[11] * B_12
296 + &k[12] * B_13
297 + &k[13] * B_14
298 + &k[14] * B_15)
299 * *dt
300 + y;
301 k[15] = function(
302 t + dt,
303 &(&k[0] * (A_16_1 * dt)
304 + &k[5] * (A_16_6 * dt)
305 + &k[6] * (A_16_7 * dt)
306 + &k[7] * (A_16_8 * dt)
307 + &k[8] * (A_16_9 * dt)
308 + &k[9] * (A_16_10 * dt)
309 + &k[10] * (A_16_11 * dt)
310 + &k[11] * (A_16_12 * dt)
311 + &k[12] * (A_16_13 * dt)
312 + y),
313 )?;
314 Ok(((&k[0] * D_1
315 + &k[7] * D_8
316 + &k[8] * D_9
317 + &k[9] * D_10
318 + &k[10] * D_11
319 + &k[11] * D_12
320 + &k[12] * D_13
321 + &k[13] * D_14
322 + &k[14] * D_15
323 + &k[15] * D_16)
324 * *dt)
325 .norm_inf())
326 }
327 fn step(
328 &self,
329 mut function: impl FnMut(Scalar, &Y) -> Result<Y, String>,
330 y: &mut Y,
331 t: &mut Scalar,
332 y_sol: &mut U,
333 t_sol: &mut Vector,
334 dydt_sol: &mut U,
335 dt: &mut Scalar,
336 _k: &mut [Y],
337 y_trial: &Y,
338 e: &Scalar,
339 ) -> Result<(), String> {
340 if e < &self.abs_tol || e / y_trial.norm_inf() < self.rel_tol {
341 *t += *dt;
342 *y = y_trial.clone();
343 t_sol.push(*t);
344 y_sol.push(y.clone());
345 dydt_sol.push(function(*t, y)?);
346 }
347 if e > &0.0 {
348 *dt *= self.dt_beta * (self.abs_tol / e).powf(1.0 / self.dt_expn)
349 }
350 Ok(())
351 }
352}
353
354impl<Y, U> InterpolateSolution<Y, U> for Verner9
355where
356 Y: Tensor,
357 for<'a> &'a Y: Mul<Scalar, Output = Y> + Sub<&'a Y, Output = Y>,
358 U: TensorVec<Item = Y>,
359{
360 fn interpolate(
361 &self,
362 time: &Vector,
363 tp: &Vector,
364 yp: &U,
365 mut function: impl FnMut(Scalar, &Y) -> Result<Y, String>,
366 ) -> Result<(U, U), IntegrationError> {
367 let mut dt;
368 let mut i;
369 let mut k_1;
370 let mut k_2;
371 let mut k_3;
372 let mut k_4;
373 let mut k_5;
374 let mut k_6;
375 let mut k_7;
376 let mut k_8;
377 let mut k_9;
378 let mut k_10;
379 let mut k_11;
380 let mut k_12;
381 let mut k_13;
382 let mut k_14;
383 let mut k_15;
384 let mut t;
385 let mut y;
386 let mut y_int = U::new();
387 let mut dydt_int = U::new();
388 let mut y_trial;
389 for time_k in time.iter() {
390 i = tp.iter().position(|tp_i| tp_i >= time_k).unwrap();
391 if time_k == &tp[i] {
392 t = tp[i];
393 y_trial = yp[i].clone();
394 dt = 0.0;
395 } else {
396 t = tp[i - 1];
397 y = yp[i - 1].clone();
398 dt = time_k - t;
399 k_1 = function(t, &y)?;
400 k_2 = function(t + C_2 * dt, &(&k_1 * (A_2_1 * dt) + &y))?;
401 k_3 = function(
402 t + C_3 * dt,
403 &(&k_1 * (A_3_1 * dt) + &k_2 * (A_3_2 * dt) + &y),
404 )?;
405 k_4 = function(
406 t + C_4 * dt,
407 &(&k_1 * (A_4_1 * dt) + &k_3 * (A_4_3 * dt) + &y),
408 )?;
409 k_5 = function(
410 t + C_5 * dt,
411 &(&k_1 * (A_5_1 * dt) + &k_3 * (A_5_3 * dt) + &k_4 * (A_5_4 * dt) + &y),
412 )?;
413 k_6 = function(
414 t + C_6 * dt,
415 &(&k_1 * (A_6_1 * dt) + &k_4 * (A_6_4 * dt) + &k_5 * (A_6_5 * dt) + &y),
416 )?;
417 k_7 = function(
418 t + C_7 * dt,
419 &(&k_1 * (A_7_1 * dt)
420 + &k_4 * (A_7_4 * dt)
421 + &k_5 * (A_7_5 * dt)
422 + &k_6 * (A_7_6 * dt)
423 + &y),
424 )?;
425 k_8 = function(
426 t + C_8 * dt,
427 &(&k_1 * (A_8_1 * dt) + &k_6 * (A_8_6 * dt) + &k_7 * (A_8_7 * dt) + &y),
428 )?;
429 k_9 = function(
430 t + C_9 * dt,
431 &(&k_1 * (A_9_1 * dt)
432 + &k_6 * (A_9_6 * dt)
433 + &k_7 * (A_9_7 * dt)
434 + &k_8 * (A_9_8 * dt)
435 + &y),
436 )?;
437 k_10 = function(
438 t + C_10 * dt,
439 &(&k_1 * (A_10_1 * dt)
440 + &k_6 * (A_10_6 * dt)
441 + &k_7 * (A_10_7 * dt)
442 + &k_8 * (A_10_8 * dt)
443 + &k_9 * (A_10_9 * dt)
444 + &y),
445 )?;
446 k_11 = function(
447 t + C_11 * dt,
448 &(&k_1 * (A_11_1 * dt)
449 + &k_6 * (A_11_6 * dt)
450 + &k_7 * (A_11_7 * dt)
451 + &k_8 * (A_11_8 * dt)
452 + &k_9 * (A_11_9 * dt)
453 + &k_10 * (A_11_10 * dt)
454 + &y),
455 )?;
456 k_12 = function(
457 t + C_12 * dt,
458 &(&k_1 * (A_12_1 * dt)
459 + &k_6 * (A_12_6 * dt)
460 + &k_7 * (A_12_7 * dt)
461 + &k_8 * (A_12_8 * dt)
462 + &k_9 * (A_12_9 * dt)
463 + &k_10 * (A_12_10 * dt)
464 + &k_11 * (A_12_11 * dt)
465 + &y),
466 )?;
467 k_13 = function(
468 t + C_13 * dt,
469 &(&k_1 * (A_13_1 * dt)
470 + &k_6 * (A_13_6 * dt)
471 + &k_7 * (A_13_7 * dt)
472 + &k_8 * (A_13_8 * dt)
473 + &k_9 * (A_13_9 * dt)
474 + &k_10 * (A_13_10 * dt)
475 + &k_11 * (A_13_11 * dt)
476 + &k_12 * (A_13_12 * dt)
477 + &y),
478 )?;
479 k_14 = function(
480 t + C_14 * dt,
481 &(&k_1 * (A_14_1 * dt)
482 + &k_6 * (A_14_6 * dt)
483 + &k_7 * (A_14_7 * dt)
484 + &k_8 * (A_14_8 * dt)
485 + &k_9 * (A_14_9 * dt)
486 + &k_10 * (A_14_10 * dt)
487 + &k_11 * (A_14_11 * dt)
488 + &k_12 * (A_14_12 * dt)
489 + &k_13 * (A_14_13 * dt)
490 + &y),
491 )?;
492 k_15 = function(
493 t + dt,
494 &(&k_1 * (A_15_1 * dt)
495 + &k_6 * (A_15_6 * dt)
496 + &k_7 * (A_15_7 * dt)
497 + &k_8 * (A_15_8 * dt)
498 + &k_9 * (A_15_9 * dt)
499 + &k_10 * (A_15_10 * dt)
500 + &k_11 * (A_15_11 * dt)
501 + &k_12 * (A_15_12 * dt)
502 + &k_13 * (A_15_13 * dt)
503 + &k_14 * (A_15_14 * dt)
504 + &y),
505 )?;
506 y_trial = (&k_1 * B_1
507 + &k_8 * B_8
508 + &k_9 * B_9
509 + &k_10 * B_10
510 + &k_11 * B_11
511 + &k_12 * B_12
512 + &k_13 * B_13
513 + &k_14 * B_14
514 + &k_15 * B_15)
515 * dt
516 + &y;
517 }
518 dydt_int.push(function(t + dt, &y_trial)?);
519 y_int.push(y_trial);
520 }
521 Ok((y_int, dydt_int))
522 }
523}