conspire/math/matrix/vector/
mod.rs1#[cfg(test)]
2use crate::math::test::ErrorTensor;
3
4use crate::math::{
5 Jacobian, Matrix, Scalar, Solution, Tensor, TensorRank1Vec, TensorRank2, TensorTuple,
6 TensorVec, write_tensor_rank_0,
7};
8use std::{
9 fmt::{Display, Formatter, Result},
10 iter::Sum,
11 mem::forget,
12 ops::{
13 Add, AddAssign, Div, DivAssign, Index, IndexMut, Mul, MulAssign, RangeFrom, RangeTo, Sub,
14 SubAssign,
15 },
16 vec::IntoIter,
17};
18
19#[derive(Clone, Debug, PartialEq)]
21pub struct Vector(Vec<Scalar>);
22
23impl Vector {
24 pub const fn as_ptr(&self) -> *const Scalar {
26 self.0.as_ptr()
27 }
28 pub fn as_slice(&self) -> &[Scalar] {
29 self.0.as_slice()
30 }
31 pub fn ones(len: usize) -> Self {
32 Self(vec![1.0; len])
33 }
34 pub fn zero(len: usize) -> Self {
35 Self(vec![0.0; len])
36 }
37}
38
39impl Default for Vector {
40 fn default() -> Self {
41 Self::new()
42 }
43}
44
45#[cfg(test)]
46impl ErrorTensor for Vector {
47 fn error_fd(&self, comparator: &Self, epsilon: Scalar) -> Option<(bool, usize)> {
48 let error_count = self
49 .iter()
50 .zip(comparator.iter())
51 .map(|(entry, comparator_entry)| {
52 entry
53 .iter()
54 .zip(comparator_entry.iter())
55 .filter(|&(&entry_i, &comparator_entry_i)| {
56 (entry_i / comparator_entry_i - 1.0).abs() >= epsilon
57 && (entry_i.abs() >= epsilon || comparator_entry_i.abs() >= epsilon)
58 })
59 .count()
60 })
61 .sum();
62 if error_count > 0 {
63 let auxiliary = self
64 .iter()
65 .zip(comparator.iter())
66 .map(|(entry, comparator_entry)| {
67 entry
68 .iter()
69 .zip(comparator_entry.iter())
70 .filter(|&(&entry_i, &comparator_entry_i)| {
71 (entry_i / comparator_entry_i - 1.0).abs() >= epsilon
72 && (entry_i - comparator_entry_i).abs() >= epsilon
73 && (entry_i.abs() >= epsilon || comparator_entry_i.abs() >= epsilon)
74 })
75 .count()
76 })
77 .sum::<usize>()
78 > 0;
79 Some((auxiliary, error_count))
80 } else {
81 None
82 }
83 }
84}
85
86impl Display for Vector {
87 fn fmt(&self, f: &mut Formatter) -> Result {
88 write!(f, "\x1B[s")?;
89 write!(f, "[")?;
90 self.0.chunks(5).enumerate().try_for_each(|(i, chunk)| {
91 chunk
92 .iter()
93 .try_for_each(|entry| write_tensor_rank_0(f, entry))?;
94 if (i + 1) * 5 < self.len() {
95 writeln!(f, "\x1B[2D,")?;
96 write!(f, "\x1B[u")?;
97 write!(f, "\x1B[{}B ", i + 1)?;
98 }
99 Ok(())
100 })?;
101 write!(f, "\x1B[2D]")?;
102 Ok(())
103 }
104}
105
106impl<const N: usize> From<[Scalar; N]> for Vector {
107 fn from(array: [Scalar; N]) -> Self {
108 Self(array.to_vec())
109 }
110}
111
112impl From<&[Scalar]> for Vector {
113 fn from(slice: &[Scalar]) -> Self {
114 Self(slice.to_vec())
115 }
116}
117
118impl From<Scalar> for Vector {
119 fn from(scalar: Scalar) -> Self {
120 Vector(vec![scalar])
121 }
122}
123
124impl From<Vec<Scalar>> for Vector {
125 fn from(vec: Vec<Scalar>) -> Self {
126 Self(vec)
127 }
128}
129
130impl From<Vector> for Vec<Scalar> {
131 fn from(vector: Vector) -> Self {
132 vector.0
133 }
134}
135
136impl<const D: usize, const I: usize> From<TensorRank1Vec<D, I>> for Vector {
137 fn from(tensor_rank_1_vec: TensorRank1Vec<D, I>) -> Self {
138 let length = tensor_rank_1_vec.len() * D;
139 let capacity = tensor_rank_1_vec.capacity() * D;
140 let pointer = tensor_rank_1_vec.as_ptr() as *mut Scalar;
141 forget(tensor_rank_1_vec);
142 unsafe { Self(Vec::from_raw_parts(pointer, length, capacity)) }
143 }
144}
145
146impl<const D: usize, const I: usize, const J: usize> From<TensorRank2<D, I, J>> for Vector {
147 fn from(tensor_rank_2: TensorRank2<D, I, J>) -> Self {
148 let length = D * D;
149 let capacity = length;
150 let pointer = tensor_rank_2.as_ptr() as *mut Scalar;
151 unsafe { Self(Vec::from_raw_parts(pointer, length, capacity)) }
152 }
153}
154
155impl FromIterator<Scalar> for Vector {
156 fn from_iter<Ii: IntoIterator<Item = Scalar>>(into_iterator: Ii) -> Self {
157 Self(Vec::from_iter(into_iterator))
158 }
159}
160
161impl Index<usize> for Vector {
162 type Output = Scalar;
163 fn index(&self, index: usize) -> &Self::Output {
164 &self.0[index]
165 }
166}
167
168impl Index<RangeTo<usize>> for Vector {
169 type Output = [Scalar];
170 fn index(&self, indices: RangeTo<usize>) -> &Self::Output {
171 &self.0[indices]
172 }
173}
174
175impl Index<RangeFrom<usize>> for Vector {
176 type Output = [Scalar];
177 fn index(&self, indices: RangeFrom<usize>) -> &Self::Output {
178 &self.0[indices]
179 }
180}
181
182impl IndexMut<usize> for Vector {
183 fn index_mut(&mut self, index: usize) -> &mut Self::Output {
184 &mut self.0[index]
185 }
186}
187
188impl Tensor for Vector {
189 type Item = Scalar;
190 fn iter(&self) -> impl Iterator<Item = &Self::Item> {
191 self.0.iter()
192 }
193 fn iter_mut(&mut self) -> impl Iterator<Item = &mut Self::Item> {
194 self.0.iter_mut()
195 }
196 fn len(&self) -> usize {
197 self.0.len()
198 }
199 fn norm_inf(&self) -> Scalar {
200 self.iter().fold(0.0, |acc, entry| entry.abs().max(acc))
201 }
202 fn size(&self) -> usize {
203 self.len()
204 }
205}
206
207impl Solution for Vector {
208 fn decrement_from(&mut self, other: &Vector) {
209 self.iter_mut()
210 .zip(other.iter())
211 .for_each(|(self_i, vector_i)| *self_i -= vector_i)
212 }
213 fn decrement_from_chained(&mut self, other: &mut Self, vector: Vector) {
214 self.iter_mut()
215 .chain(other.iter_mut())
216 .zip(vector)
217 .for_each(|(entry_i, vector_i)| *entry_i -= vector_i)
218 }
219}
220
221impl Jacobian for Vector {
222 fn fill_into(self, vector: &mut Vector) {
223 self.into_iter()
224 .zip(vector.iter_mut())
225 .for_each(|(self_i, vector_i)| *vector_i = self_i)
226 }
227 fn fill_into_chained(self, other: Self, vector: &mut Self) {
228 self.into_iter()
229 .chain(other)
230 .zip(vector.iter_mut())
231 .for_each(|(entry_i, vector_i)| *vector_i = entry_i)
232 }
233}
234
235impl IntoIterator for Vector {
236 type Item = Scalar;
237 type IntoIter = IntoIter<Self::Item>;
238 fn into_iter(self) -> Self::IntoIter {
239 self.0.into_iter()
240 }
241}
242
243impl TensorVec for Vector {
244 type Item = Scalar;
245 fn append(&mut self, other: &mut Self) {
246 self.0.append(&mut other.0)
247 }
248 fn capacity(&self) -> usize {
249 self.0.capacity()
250 }
251 fn is_empty(&self) -> bool {
252 self.0.is_empty()
253 }
254 fn new() -> Self {
255 Self(Vec::new())
256 }
257 fn push(&mut self, item: Self::Item) {
258 self.0.push(item)
259 }
260 fn remove(&mut self, index: usize) -> Self::Item {
261 self.0.remove(index)
262 }
263 fn retain<F>(&mut self, f: F)
264 where
265 F: FnMut(&Self::Item) -> bool,
266 {
267 self.0.retain(f)
268 }
269 fn swap_remove(&mut self, index: usize) -> Self::Item {
270 self.0.swap_remove(index)
271 }
272}
273
274impl Sum for Vector {
275 fn sum<Ii>(iter: Ii) -> Self
276 where
277 Ii: Iterator<Item = Self>,
278 {
279 iter.reduce(|mut acc, item| {
280 acc += item;
281 acc
282 })
283 .unwrap_or_else(Self::default)
284 }
285}
286
287impl Div<Scalar> for Vector {
288 type Output = Self;
289 fn div(mut self, scalar: Scalar) -> Self::Output {
290 self /= &scalar;
291 self
292 }
293}
294
295impl Div<&Scalar> for Vector {
296 type Output = Self;
297 fn div(mut self, scalar: &Scalar) -> Self::Output {
298 self /= scalar;
299 self
300 }
301}
302
303impl DivAssign<Scalar> for Vector {
304 fn div_assign(&mut self, scalar: Scalar) {
305 self.iter_mut().for_each(|entry| *entry /= &scalar);
306 }
307}
308
309impl DivAssign<&Scalar> for Vector {
310 fn div_assign(&mut self, scalar: &Scalar) {
311 self.iter_mut().for_each(|entry| *entry /= scalar);
312 }
313}
314
315impl Mul<Scalar> for Vector {
316 type Output = Self;
317 fn mul(mut self, scalar: Scalar) -> Self::Output {
318 self *= &scalar;
319 self
320 }
321}
322
323impl Mul<&Scalar> for Vector {
324 type Output = Self;
325 fn mul(mut self, scalar: &Scalar) -> Self::Output {
326 self *= scalar;
327 self
328 }
329}
330
331impl Mul<Scalar> for &Vector {
332 type Output = Vector;
333 fn mul(self, scalar: Scalar) -> Self::Output {
334 self.iter().map(|self_i| self_i * scalar).collect()
335 }
336}
337
338impl Mul<&Scalar> for &Vector {
339 type Output = Vector;
340 fn mul(self, scalar: &Scalar) -> Self::Output {
341 self.iter().map(|self_i| self_i * scalar).collect()
342 }
343}
344
345impl MulAssign<Scalar> for Vector {
346 fn mul_assign(&mut self, scalar: Scalar) {
347 self.iter_mut().for_each(|entry| *entry *= &scalar);
348 }
349}
350
351impl MulAssign<&Scalar> for Vector {
352 fn mul_assign(&mut self, scalar: &Scalar) {
353 self.iter_mut().for_each(|entry| *entry *= scalar);
354 }
355}
356
357impl Add for Vector {
358 type Output = Self;
359 fn add(mut self, vector: Self) -> Self::Output {
360 self += vector;
361 self
362 }
363}
364
365impl Add<&Self> for Vector {
366 type Output = Self;
367 fn add(mut self, vector: &Self) -> Self::Output {
368 self += vector;
369 self
370 }
371}
372
373impl AddAssign for Vector {
374 fn add_assign(&mut self, vector: Self) {
375 self.iter_mut()
376 .zip(vector.iter())
377 .for_each(|(self_entry, scalar)| *self_entry += scalar);
378 }
379}
380
381impl AddAssign<&Self> for Vector {
382 fn add_assign(&mut self, vector: &Self) {
383 self.iter_mut()
384 .zip(vector.iter())
385 .for_each(|(self_entry, scalar)| *self_entry += scalar);
386 }
387}
388
389impl Mul for Vector {
390 type Output = Scalar;
391 fn mul(self, vector: Self) -> Self::Output {
392 self.iter()
393 .zip(vector.iter())
394 .map(|(self_i, vector_i)| self_i * vector_i)
395 .sum()
396 }
397}
398
399impl Mul<&Self> for Vector {
400 type Output = Scalar;
401 fn mul(self, vector: &Self) -> Self::Output {
402 self.iter()
403 .zip(vector.iter())
404 .map(|(self_i, vector_i)| self_i * vector_i)
405 .sum()
406 }
407}
408
409impl Mul<Vector> for &Vector {
410 type Output = Scalar;
411 fn mul(self, vector: Vector) -> Self::Output {
412 self.iter()
413 .zip(vector.iter())
414 .map(|(self_i, vector_i)| self_i * vector_i)
415 .sum()
416 }
417}
418
419impl Mul for &Vector {
420 type Output = Scalar;
421 fn mul(self, vector: Self) -> Self::Output {
422 self.iter()
423 .zip(vector.iter())
424 .map(|(self_i, vector_i)| self_i * vector_i)
425 .sum()
426 }
427}
428
429impl Sub for Vector {
430 type Output = Self;
431 fn sub(mut self, vector: Self) -> Self::Output {
432 self -= vector;
433 self
434 }
435}
436
437impl Sub<&Self> for Vector {
438 type Output = Self;
439 fn sub(mut self, vector: &Self) -> Self::Output {
440 self -= vector;
441 self
442 }
443}
444
445impl Sub<Vector> for &Vector {
446 type Output = Vector;
447 fn sub(self, mut vector: Vector) -> Self::Output {
448 vector
449 .iter_mut()
450 .zip(self.iter())
451 .for_each(|(vector_i, self_i)| *vector_i = self_i - *vector_i);
452 vector
453 }
454}
455
456impl Sub for &Vector {
457 type Output = Vector;
458 fn sub(self, vector: Self) -> Self::Output {
459 vector
460 .iter()
461 .zip(self.iter())
462 .map(|(vector_i, self_i)| self_i - vector_i)
463 .collect()
464 }
465}
466
467impl SubAssign for Vector {
468 fn sub_assign(&mut self, vector: Self) {
469 self.iter_mut()
470 .zip(vector.iter())
471 .for_each(|(self_entry, tensor_rank_1)| *self_entry -= tensor_rank_1);
472 }
473}
474
475impl SubAssign<&Self> for Vector {
476 fn sub_assign(&mut self, vector: &Self) {
477 self.iter_mut()
478 .zip(vector.iter())
479 .for_each(|(self_entry, tensor_rank_1)| *self_entry -= tensor_rank_1);
480 }
481}
482
483impl SubAssign<&[Scalar]> for Vector {
484 fn sub_assign(&mut self, slice: &[Scalar]) {
485 self.iter_mut()
486 .zip(slice.iter())
487 .for_each(|(self_entry, tensor_rank_1)| *self_entry -= tensor_rank_1);
488 }
489}
490
491impl Mul<&Matrix> for &Vector {
492 type Output = Vector;
493 fn mul(self, matrix: &Matrix) -> Self::Output {
494 let mut output = Vector::zero(matrix.width());
495 self.iter()
496 .zip(matrix.iter())
497 .for_each(|(self_i, matrix_i)| {
498 output
499 .iter_mut()
500 .zip(matrix_i.iter())
501 .for_each(|(output_j, matrix_ij)| *output_j += self_i * matrix_ij)
502 });
503 output
504 }
505}
506
507impl<const D: usize, const I: usize> Mul<&TensorRank1Vec<D, I>> for &Vector {
508 type Output = Scalar;
509 fn mul(self, tensor_rank_1_vec: &TensorRank1Vec<D, I>) -> Self::Output {
510 tensor_rank_1_vec
511 .iter()
512 .enumerate()
513 .map(|(a, entry_a)| {
514 entry_a
515 .iter()
516 .enumerate()
517 .map(|(i, entry_a_i)| self[D * a + i] * entry_a_i)
518 .sum::<Scalar>()
519 })
520 .sum()
521 }
522}
523
524impl<const D: usize, const I: usize, const J: usize> Mul<&TensorRank2<D, I, J>> for &Vector {
525 type Output = Scalar;
526 fn mul(self, tensor_rank_2: &TensorRank2<D, I, J>) -> Self::Output {
527 tensor_rank_2
528 .iter()
529 .enumerate()
530 .map(|(i, entry_i)| {
531 entry_i
532 .iter()
533 .enumerate()
534 .map(|(j, entry_ij)| self[D * i + j] * entry_ij)
535 .sum::<Scalar>()
536 })
537 .sum()
538 }
539}
540
541impl<const D: usize, const I: usize, const J: usize, const K: usize, const L: usize>
542 Mul<&TensorTuple<TensorRank2<D, I, J>, TensorRank2<D, K, L>>> for &Vector
543{
544 type Output = Scalar;
545 fn mul(
546 self,
547 tensor_tuple: &TensorTuple<TensorRank2<D, I, J>, TensorRank2<D, K, L>>,
548 ) -> Self::Output {
549 let (tensor_rank_2_a, tensor_rank_2_b) = tensor_tuple.into();
550 &self.iter().take(D * D).copied().collect::<Vector>() * tensor_rank_2_a
551 + &self.iter().skip(D * D).copied().collect::<Vector>() * tensor_rank_2_b
552 }
553}