conspire/math/matrix/vector/
mod.rs1#[cfg(test)]
2use crate::math::test::ErrorTensor;
3
4use crate::math::{
5 Jacobian, Matrix, Scalar, Solution, SquareMatrix, Tensor, TensorRank1Vec, TensorRank2,
6 TensorTuple, TensorVec, write_tensor_rank_0,
7};
8use std::{
9 fmt::{Display, Formatter, Result},
10 iter::Sum,
11 mem::forget,
12 ops::{
13 Add, AddAssign, Div, DivAssign, Index, IndexMut, Mul, MulAssign, RangeFrom, RangeTo, Sub,
14 SubAssign,
15 },
16 slice, vec,
17};
18
19#[derive(Clone, Debug, PartialEq)]
21pub struct Vector(Vec<Scalar>);
22
23impl Vector {
24 pub const fn as_ptr(&self) -> *const Scalar {
26 self.0.as_ptr()
27 }
28 pub fn as_slice(&self) -> &[Scalar] {
29 self.0.as_slice()
30 }
31 pub fn ones(len: usize) -> Self {
32 Self(vec![1.0; len])
33 }
34 pub fn zero(len: usize) -> Self {
35 Self(vec![0.0; len])
36 }
37}
38
39impl Default for Vector {
40 fn default() -> Self {
41 Self::new()
42 }
43}
44
45#[cfg(test)]
46impl ErrorTensor for Vector {
47 fn error_fd(&self, comparator: &Self, epsilon: Scalar) -> Option<(bool, usize)> {
48 let error_count = self
49 .iter()
50 .zip(comparator.iter())
51 .map(|(entry, comparator_entry)| {
52 entry
53 .iter()
54 .zip(comparator_entry.iter())
55 .filter(|&(&entry_i, &comparator_entry_i)| {
56 (entry_i / comparator_entry_i - 1.0).abs() >= epsilon
57 && (entry_i.abs() >= epsilon || comparator_entry_i.abs() >= epsilon)
58 })
59 .count()
60 })
61 .sum();
62 if error_count > 0 {
63 let auxiliary = self
64 .iter()
65 .zip(comparator.iter())
66 .map(|(entry, comparator_entry)| {
67 entry
68 .iter()
69 .zip(comparator_entry.iter())
70 .filter(|&(&entry_i, &comparator_entry_i)| {
71 (entry_i / comparator_entry_i - 1.0).abs() >= epsilon
72 && (entry_i - comparator_entry_i).abs() >= epsilon
73 && (entry_i.abs() >= epsilon || comparator_entry_i.abs() >= epsilon)
74 })
75 .count()
76 })
77 .sum::<usize>()
78 > 0;
79 Some((auxiliary, error_count))
80 } else {
81 None
82 }
83 }
84}
85
86impl Display for Vector {
87 fn fmt(&self, f: &mut Formatter) -> Result {
88 write!(f, "\x1B[s")?;
89 write!(f, "[")?;
90 self.0.chunks(5).enumerate().try_for_each(|(i, chunk)| {
91 chunk
92 .iter()
93 .try_for_each(|entry| write_tensor_rank_0(f, entry))?;
94 if (i + 1) * 5 < self.len() {
95 writeln!(f, "\x1B[2D,")?;
96 write!(f, "\x1B[u")?;
97 write!(f, "\x1B[{}B ", i + 1)?;
98 }
99 Ok(())
100 })?;
101 write!(f, "\x1B[2D]")?;
102 Ok(())
103 }
104}
105
106impl<const N: usize> From<[Scalar; N]> for Vector {
107 fn from(array: [Scalar; N]) -> Self {
108 Self(array.to_vec())
109 }
110}
111
112impl From<&[Scalar]> for Vector {
113 fn from(slice: &[Scalar]) -> Self {
114 Self(slice.to_vec())
115 }
116}
117
118impl From<Scalar> for Vector {
119 fn from(scalar: Scalar) -> Self {
120 Vector(vec![scalar])
121 }
122}
123
124impl From<Vec<Scalar>> for Vector {
125 fn from(vec: Vec<Scalar>) -> Self {
126 Self(vec)
127 }
128}
129
130impl From<Vector> for Vec<Scalar> {
131 fn from(vector: Vector) -> Self {
132 vector.0
133 }
134}
135
136impl<const D: usize, const I: usize> From<TensorRank1Vec<D, I>> for Vector {
137 fn from(tensor_rank_1_vec: TensorRank1Vec<D, I>) -> Self {
138 let length = tensor_rank_1_vec.len() * D;
139 let capacity = tensor_rank_1_vec.capacity() * D;
140 let pointer = tensor_rank_1_vec.as_ptr() as *mut Scalar;
141 forget(tensor_rank_1_vec);
142 unsafe { Self(Vec::from_raw_parts(pointer, length, capacity)) }
143 }
144}
145
146impl<const D: usize, const I: usize, const J: usize> From<TensorRank2<D, I, J>> for Vector {
147 fn from(tensor_rank_2: TensorRank2<D, I, J>) -> Self {
148 let length = D * D;
149 let capacity = length;
150 let pointer = tensor_rank_2.as_ptr() as *mut Scalar;
151 unsafe { Self(Vec::from_raw_parts(pointer, length, capacity)) }
152 }
153}
154
155impl FromIterator<Scalar> for Vector {
156 fn from_iter<Ii: IntoIterator<Item = Scalar>>(into_iterator: Ii) -> Self {
157 Self(Vec::from_iter(into_iterator))
158 }
159}
160
161impl Index<usize> for Vector {
162 type Output = Scalar;
163 fn index(&self, index: usize) -> &Self::Output {
164 &self.0[index]
165 }
166}
167
168impl Index<RangeTo<usize>> for Vector {
169 type Output = [Scalar];
170 fn index(&self, indices: RangeTo<usize>) -> &Self::Output {
171 &self.0[indices]
172 }
173}
174
175impl Index<RangeFrom<usize>> for Vector {
176 type Output = [Scalar];
177 fn index(&self, indices: RangeFrom<usize>) -> &Self::Output {
178 &self.0[indices]
179 }
180}
181
182impl IndexMut<usize> for Vector {
183 fn index_mut(&mut self, index: usize) -> &mut Self::Output {
184 &mut self.0[index]
185 }
186}
187
188impl Tensor for Vector {
189 type Item = Scalar;
190 fn iter(&self) -> impl Iterator<Item = &Self::Item> {
191 self.0.iter()
192 }
193 fn iter_mut(&mut self) -> impl Iterator<Item = &mut Self::Item> {
194 self.0.iter_mut()
195 }
196 fn len(&self) -> usize {
197 self.0.len()
198 }
199 fn norm_inf(&self) -> Scalar {
200 self.iter().fold(0.0, |acc, entry| entry.abs().max(acc))
201 }
202 fn size(&self) -> usize {
203 self.len()
204 }
205}
206
207impl Solution for Vector {
208 fn decrement_from(&mut self, other: &Vector) {
209 self.iter_mut()
210 .zip(other.iter())
211 .for_each(|(self_i, vector_i)| *self_i -= vector_i)
212 }
213 fn decrement_from_chained(&mut self, other: &mut Self, vector: Vector) {
214 self.iter_mut()
215 .chain(other.iter_mut())
216 .zip(vector)
217 .for_each(|(entry_i, vector_i)| *entry_i -= vector_i)
218 }
219}
220
221impl Jacobian for Vector {
222 fn fill_into(self, vector: &mut Vector) {
223 self.into_iter()
224 .zip(vector.iter_mut())
225 .for_each(|(self_i, vector_i)| *vector_i = self_i)
226 }
227 fn fill_into_chained(self, other: Self, vector: &mut Self) {
228 self.into_iter()
229 .chain(other)
230 .zip(vector.iter_mut())
231 .for_each(|(entry_i, vector_i)| *vector_i = entry_i)
232 }
233}
234
235impl IntoIterator for Vector {
236 type Item = Scalar;
237 type IntoIter = vec::IntoIter<Self::Item>;
238 fn into_iter(self) -> Self::IntoIter {
239 self.0.into_iter()
240 }
241}
242
243impl<'a> IntoIterator for &'a Vector {
244 type Item = &'a Scalar;
245 type IntoIter = slice::Iter<'a, Scalar>;
246 fn into_iter(self) -> Self::IntoIter {
247 self.0.iter()
248 }
249}
250
251impl Extend<Scalar> for Vector {
252 fn extend<I>(&mut self, iter: I)
253 where
254 I: IntoIterator<Item = Scalar>,
255 {
256 self.0.extend(iter)
257 }
258}
259
260impl TensorVec for Vector {
261 type Item = Scalar;
262 fn append(&mut self, other: &mut Self) {
263 self.0.append(&mut other.0)
264 }
265 fn capacity(&self) -> usize {
266 self.0.capacity()
267 }
268 fn is_empty(&self) -> bool {
269 self.0.is_empty()
270 }
271 fn new() -> Self {
272 Self(Vec::new())
273 }
274 fn push(&mut self, item: Self::Item) {
275 self.0.push(item)
276 }
277 fn remove(&mut self, index: usize) -> Self::Item {
278 self.0.remove(index)
279 }
280 fn retain<F>(&mut self, f: F)
281 where
282 F: FnMut(&Self::Item) -> bool,
283 {
284 self.0.retain(f)
285 }
286 fn swap_remove(&mut self, index: usize) -> Self::Item {
287 self.0.swap_remove(index)
288 }
289}
290
291impl Sum for Vector {
292 fn sum<Ii>(iter: Ii) -> Self
293 where
294 Ii: Iterator<Item = Self>,
295 {
296 iter.reduce(|mut acc, item| {
297 acc += item;
298 acc
299 })
300 .unwrap_or_else(Self::default)
301 }
302}
303
304impl Div<Scalar> for Vector {
305 type Output = Self;
306 fn div(mut self, scalar: Scalar) -> Self::Output {
307 self /= &scalar;
308 self
309 }
310}
311
312impl Div<&Scalar> for Vector {
313 type Output = Self;
314 fn div(mut self, scalar: &Scalar) -> Self::Output {
315 self /= scalar;
316 self
317 }
318}
319
320impl DivAssign<Scalar> for Vector {
321 fn div_assign(&mut self, scalar: Scalar) {
322 self.iter_mut().for_each(|entry| *entry /= &scalar);
323 }
324}
325
326impl DivAssign<&Scalar> for Vector {
327 fn div_assign(&mut self, scalar: &Scalar) {
328 self.iter_mut().for_each(|entry| *entry /= scalar);
329 }
330}
331
332impl Mul<Scalar> for Vector {
333 type Output = Self;
334 fn mul(mut self, scalar: Scalar) -> Self::Output {
335 self *= &scalar;
336 self
337 }
338}
339
340impl Mul<&Scalar> for Vector {
341 type Output = Self;
342 fn mul(mut self, scalar: &Scalar) -> Self::Output {
343 self *= scalar;
344 self
345 }
346}
347
348impl Mul<Scalar> for &Vector {
349 type Output = Vector;
350 fn mul(self, scalar: Scalar) -> Self::Output {
351 self.iter().map(|self_i| self_i * scalar).collect()
352 }
353}
354
355impl Mul<&Scalar> for &Vector {
356 type Output = Vector;
357 fn mul(self, scalar: &Scalar) -> Self::Output {
358 self.iter().map(|self_i| self_i * scalar).collect()
359 }
360}
361
362impl MulAssign<Scalar> for Vector {
363 fn mul_assign(&mut self, scalar: Scalar) {
364 self.iter_mut().for_each(|entry| *entry *= &scalar);
365 }
366}
367
368impl MulAssign<&Scalar> for Vector {
369 fn mul_assign(&mut self, scalar: &Scalar) {
370 self.iter_mut().for_each(|entry| *entry *= scalar);
371 }
372}
373
374impl Add for Vector {
375 type Output = Self;
376 fn add(mut self, vector: Self) -> Self::Output {
377 self += vector;
378 self
379 }
380}
381
382impl Add<&Self> for Vector {
383 type Output = Self;
384 fn add(mut self, vector: &Self) -> Self::Output {
385 self += vector;
386 self
387 }
388}
389
390impl AddAssign for Vector {
391 fn add_assign(&mut self, vector: Self) {
392 self.iter_mut()
393 .zip(vector.iter())
394 .for_each(|(self_entry, scalar)| *self_entry += scalar);
395 }
396}
397
398impl AddAssign<&Self> for Vector {
399 fn add_assign(&mut self, vector: &Self) {
400 self.iter_mut()
401 .zip(vector.iter())
402 .for_each(|(self_entry, scalar)| *self_entry += scalar);
403 }
404}
405
406impl Mul for Vector {
407 type Output = Scalar;
408 fn mul(self, vector: Self) -> Self::Output {
409 self.iter()
410 .zip(vector.iter())
411 .map(|(self_i, vector_i)| self_i * vector_i)
412 .sum()
413 }
414}
415
416impl Mul<&Self> for Vector {
417 type Output = Scalar;
418 fn mul(self, vector: &Self) -> Self::Output {
419 self.iter()
420 .zip(vector.iter())
421 .map(|(self_i, vector_i)| self_i * vector_i)
422 .sum()
423 }
424}
425
426impl Mul<Vector> for &Vector {
427 type Output = Scalar;
428 fn mul(self, vector: Vector) -> Self::Output {
429 self.iter()
430 .zip(vector.iter())
431 .map(|(self_i, vector_i)| self_i * vector_i)
432 .sum()
433 }
434}
435
436impl Mul for &Vector {
437 type Output = Scalar;
438 fn mul(self, vector: Self) -> Self::Output {
439 self.iter()
440 .zip(vector.iter())
441 .map(|(self_i, vector_i)| self_i * vector_i)
442 .sum()
443 }
444}
445
446impl Sub for Vector {
447 type Output = Self;
448 fn sub(mut self, vector: Self) -> Self::Output {
449 self -= vector;
450 self
451 }
452}
453
454impl Sub<&Self> for Vector {
455 type Output = Self;
456 fn sub(mut self, vector: &Self) -> Self::Output {
457 self -= vector;
458 self
459 }
460}
461
462impl Sub<Vector> for &Vector {
463 type Output = Vector;
464 fn sub(self, mut vector: Vector) -> Self::Output {
465 vector
466 .iter_mut()
467 .zip(self.iter())
468 .for_each(|(vector_i, self_i)| *vector_i = self_i - *vector_i);
469 vector
470 }
471}
472
473impl Sub for &Vector {
474 type Output = Vector;
475 fn sub(self, vector: Self) -> Self::Output {
476 vector
477 .iter()
478 .zip(self.iter())
479 .map(|(vector_i, self_i)| self_i - vector_i)
480 .collect()
481 }
482}
483
484impl SubAssign for Vector {
485 fn sub_assign(&mut self, vector: Self) {
486 self.iter_mut()
487 .zip(vector.iter())
488 .for_each(|(self_entry, tensor_rank_1)| *self_entry -= tensor_rank_1);
489 }
490}
491
492impl SubAssign<&Self> for Vector {
493 fn sub_assign(&mut self, vector: &Self) {
494 self.iter_mut()
495 .zip(vector.iter())
496 .for_each(|(self_entry, tensor_rank_1)| *self_entry -= tensor_rank_1);
497 }
498}
499
500impl SubAssign<&[Scalar]> for Vector {
501 fn sub_assign(&mut self, slice: &[Scalar]) {
502 self.iter_mut()
503 .zip(slice.iter())
504 .for_each(|(self_entry, tensor_rank_1)| *self_entry -= tensor_rank_1);
505 }
506}
507
508impl Mul<&Matrix> for &Vector {
509 type Output = Vector;
510 fn mul(self, matrix: &Matrix) -> Self::Output {
511 let mut output = Vector::zero(matrix.width());
512 self.iter()
513 .zip(matrix.iter())
514 .for_each(|(self_i, matrix_i)| {
515 output
516 .iter_mut()
517 .zip(matrix_i.iter())
518 .for_each(|(output_j, matrix_ij)| *output_j += self_i * matrix_ij)
519 });
520 output
521 }
522}
523
524impl<const D: usize, const I: usize> Mul<&TensorRank1Vec<D, I>> for &Vector {
525 type Output = Scalar;
526 fn mul(self, tensor_rank_1_vec: &TensorRank1Vec<D, I>) -> Self::Output {
527 tensor_rank_1_vec
528 .iter()
529 .enumerate()
530 .map(|(a, entry_a)| {
531 entry_a
532 .iter()
533 .enumerate()
534 .map(|(i, entry_a_i)| self[D * a + i] * entry_a_i)
535 .sum::<Scalar>()
536 })
537 .sum()
538 }
539}
540
541impl<const D: usize, const I: usize, const J: usize> Mul<&TensorRank2<D, I, J>> for &Vector {
542 type Output = Scalar;
543 fn mul(self, tensor_rank_2: &TensorRank2<D, I, J>) -> Self::Output {
544 tensor_rank_2
545 .iter()
546 .enumerate()
547 .map(|(i, entry_i)| {
548 entry_i
549 .iter()
550 .enumerate()
551 .map(|(j, entry_ij)| self[D * i + j] * entry_ij)
552 .sum::<Scalar>()
553 })
554 .sum()
555 }
556}
557
558impl<const D: usize, const I: usize, const J: usize, const K: usize, const L: usize>
559 Mul<&TensorTuple<TensorRank2<D, I, J>, TensorRank2<D, K, L>>> for &Vector
560{
561 type Output = Scalar;
562 fn mul(
563 self,
564 tensor_tuple: &TensorTuple<TensorRank2<D, I, J>, TensorRank2<D, K, L>>,
565 ) -> Self::Output {
566 let (tensor_rank_2_a, tensor_rank_2_b) = tensor_tuple.into();
567 &self.iter().take(D * D).copied().collect::<Vector>() * tensor_rank_2_a
568 + &self.iter().skip(D * D).copied().collect::<Vector>() * tensor_rank_2_b
569 }
570}
571
572impl Div<SquareMatrix> for &Vector {
573 type Output = Vector;
574 fn div(self, _square_matrix: SquareMatrix) -> Self::Output {
575 todo!()
576 }
577}