conspire/math/tensor/rank_0/
mod.rs#[cfg(test)]
mod test;
#[cfg(test)]
use super::test::ErrorTensor;
pub mod list;
use super::{Hessian, Tensor, TensorArray};
pub type TensorRank0 = f64;
#[cfg(test)]
impl ErrorTensor for TensorRank0 {
fn error(
&self,
comparator: &Self,
tol_abs: &TensorRank0,
tol_rel: &TensorRank0,
) -> Option<usize> {
if &(self - comparator).abs() >= tol_abs && &(self / comparator - 1.0).abs() >= tol_rel {
Some(1)
} else {
None
}
}
fn error_fd(&self, comparator: &Self, epsilon: &TensorRank0) -> Option<(bool, usize)> {
if &(self / comparator - 1.0).abs() >= epsilon {
Some((true, 1))
} else {
None
}
}
}
impl Hessian for TensorRank0 {
fn is_positive_definite(&self) -> bool {
self > &0.0
}
}
impl Tensor for TensorRank0 {
type Item = TensorRank0;
fn full_contraction(&self, tensor_rank_0: &Self) -> TensorRank0 {
self * tensor_rank_0
}
fn is_zero(&self) -> bool {
self == &0.0
}
fn iter(&self) -> impl Iterator<Item = &Self::Item> {
[0.0].iter()
}
fn iter_mut(&mut self) -> impl Iterator<Item = &mut Self::Item> {
[self].into_iter()
}
fn normalized(self) -> Self {
1.0
}
}
impl TensorArray for TensorRank0 {
type Array = [Self; 1];
type Item = TensorRank0;
fn as_array(&self) -> Self::Array {
[*self]
}
fn identity() -> Self {
1.0
}
fn new(array: Self::Array) -> Self {
array[0]
}
fn zero() -> Self {
0.0
}
}