1#[cfg(test)]
2mod test;
3
4pub mod list;
5pub mod list_2d;
6pub mod vec;
7pub mod vec_2d;
8
9use std::{
10 fmt::{self, Display, Formatter},
11 mem::transmute,
12 ops::{Add, AddAssign, Div, DivAssign, Index, IndexMut, Mul, MulAssign, Sub, SubAssign},
13};
14
15use super::{
16 super::write_tensor_rank_0, Jacobian, Solution, Tensor, TensorArray, Vector,
17 rank_0::TensorRank0, rank_2::TensorRank2,
18};
19
20#[cfg(test)]
21use super::test::ErrorTensor;
22
23#[derive(Clone, Debug, PartialEq)]
27pub struct TensorRank1<const D: usize, const I: usize>([TensorRank0; D]);
28
29pub const fn tensor_rank_1<const D: usize, const I: usize>(
30 array: [TensorRank0; D],
31) -> TensorRank1<D, I> {
32 TensorRank1(array)
33}
34
35impl<const D: usize, const I: usize> Display for TensorRank1<D, I> {
36 fn fmt(&self, f: &mut Formatter) -> fmt::Result {
37 write!(f, "\x1B[s")?;
38 write!(f, "[")?;
39 self.iter()
40 .try_for_each(|entry| write_tensor_rank_0(f, entry))?;
41 write!(f, "\x1B[2D]")
42 }
43}
44
45impl<const D: usize, const I: usize> TensorRank1<D, I> {
46 pub fn cross(&self, tensor_rank_1: &Self) -> Self {
48 if D == 3 {
49 let mut output = zero();
50 output[0] = self[1] * tensor_rank_1[2] - self[2] * tensor_rank_1[1];
51 output[1] = self[2] * tensor_rank_1[0] - self[0] * tensor_rank_1[2];
52 output[2] = self[0] * tensor_rank_1[1] - self[1] * tensor_rank_1[0];
53 output
54 } else {
55 panic!()
56 }
57 }
58}
59
60#[cfg(test)]
61impl<const D: usize, const I: usize> ErrorTensor for TensorRank1<D, I> {
62 fn error_fd(&self, comparator: &Self, epsilon: &TensorRank0) -> Option<(bool, usize)> {
63 let error_count = self
64 .iter()
65 .zip(comparator.iter())
66 .filter(|&(&self_i, &comparator_i)| {
67 &(self_i / comparator_i - 1.0).abs() >= epsilon
68 && (&self_i.abs() >= epsilon || &comparator_i.abs() >= epsilon)
69 })
70 .count();
71 if error_count > 0 {
72 Some((true, error_count))
73 } else {
74 None
75 }
76 }
77}
78
79impl<const D: usize, const I: usize> Solution for TensorRank1<D, I> {
80 fn decrement_from_chained(&mut self, _other: &mut Vector, _vector: Vector) {
81 unimplemented!()
82 }
83}
84
85impl<const D: usize, const I: usize> Jacobian for TensorRank1<D, I> {
86 fn fill_into(self, _vector: &mut Vector) {
87 unimplemented!()
88 }
89 fn fill_into_chained(self, _other: Vector, _vector: &mut Vector) {
90 unimplemented!()
91 }
92}
93
94impl<const D: usize, const I: usize> Sub<Vector> for TensorRank1<D, I> {
95 type Output = Self;
96 fn sub(self, _vector: Vector) -> Self::Output {
97 unimplemented!()
98 }
99}
100
101impl<const D: usize, const I: usize> Sub<&Vector> for TensorRank1<D, I> {
102 type Output = Self;
103 fn sub(self, _vector: &Vector) -> Self::Output {
104 unimplemented!()
105 }
106}
107
108impl<const D: usize, const I: usize> Tensor for TensorRank1<D, I> {
109 type Item = TensorRank0;
110 fn full_contraction(&self, tensor_rank_1: &Self) -> TensorRank0 {
111 self * tensor_rank_1
112 }
113 fn iter(&self) -> impl Iterator<Item = &Self::Item> {
114 self.0.iter()
115 }
116 fn iter_mut(&mut self) -> impl Iterator<Item = &mut Self::Item> {
117 self.0.iter_mut()
118 }
119 fn norm_inf(&self) -> TensorRank0 {
120 self.iter().fold(0.0, |acc, entry| entry.abs().max(acc))
121 }
122}
123
124impl<const D: usize, const I: usize> IntoIterator for TensorRank1<D, I> {
125 type Item = TensorRank0;
126 type IntoIter = std::array::IntoIter<Self::Item, D>;
127 fn into_iter(self) -> Self::IntoIter {
128 self.0.into_iter()
129 }
130}
131
132impl<const D: usize, const I: usize> TensorArray for TensorRank1<D, I> {
133 type Array = [TensorRank0; D];
134 type Item = TensorRank0;
135 fn as_array(&self) -> Self::Array {
136 self.0
137 }
138 fn identity() -> Self {
139 ones()
140 }
141 fn new(array: Self::Array) -> Self {
142 array.into_iter().collect()
143 }
144 fn zero() -> Self {
145 zero()
146 }
147}
148
149pub const fn ones<const D: usize, const I: usize>() -> TensorRank1<D, I> {
151 TensorRank1([1.0; D])
152}
153
154pub const fn zero<const D: usize, const I: usize>() -> TensorRank1<D, I> {
156 TensorRank1([0.0; D])
157}
158
159impl<const D: usize, const I: usize> From<[TensorRank0; D]> for TensorRank1<D, I> {
160 fn from(array: [TensorRank0; D]) -> Self {
161 Self(array)
162 }
163}
164
165impl<const D: usize, const I: usize> From<Vec<TensorRank0>> for TensorRank1<D, I> {
166 fn from(vec: Vec<TensorRank0>) -> Self {
167 Self(vec.try_into().unwrap())
168 }
169}
170
171impl<const D: usize, const I: usize> From<TensorRank1<D, I>> for [TensorRank0; D] {
172 fn from(tensor_rank_1: TensorRank1<D, I>) -> Self {
173 tensor_rank_1.0
174 }
175}
176
177impl<const D: usize, const I: usize> From<TensorRank1<D, I>> for Vec<TensorRank0> {
178 fn from(tensor_rank_1: TensorRank1<D, I>) -> Self {
179 tensor_rank_1.0.to_vec()
180 }
181}
182
183impl From<TensorRank1<3, 0>> for TensorRank1<3, 1> {
184 fn from(tensor_rank_1: TensorRank1<3, 0>) -> Self {
185 unsafe { transmute::<TensorRank1<3, 0>, TensorRank1<3, 1>>(tensor_rank_1) }
186 }
187}
188
189impl<const D: usize, const I: usize> FromIterator<TensorRank0> for TensorRank1<D, I> {
190 fn from_iter<Ii: IntoIterator<Item = TensorRank0>>(into_iterator: Ii) -> Self {
191 let mut tensor_rank_1 = zero();
192 tensor_rank_1
193 .iter_mut()
194 .zip(into_iterator)
195 .for_each(|(tensor_rank_1_i, value_i)| *tensor_rank_1_i = value_i);
196 tensor_rank_1
197 }
198}
199
200impl<const D: usize, const I: usize> Index<usize> for TensorRank1<D, I> {
201 type Output = TensorRank0;
202 fn index(&self, index: usize) -> &Self::Output {
203 &self.0[index]
204 }
205}
206
207impl<const D: usize, const I: usize> IndexMut<usize> for TensorRank1<D, I> {
208 fn index_mut(&mut self, index: usize) -> &mut Self::Output {
209 &mut self.0[index]
210 }
211}
212
213impl<const D: usize, const I: usize> std::iter::Sum for TensorRank1<D, I> {
214 fn sum<Ii>(iter: Ii) -> Self
215 where
216 Ii: Iterator<Item = Self>,
217 {
218 let mut output = zero();
219 iter.for_each(|item| output += item);
220 output
221 }
222}
223
224impl<const D: usize, const I: usize> Div<TensorRank0> for TensorRank1<D, I> {
225 type Output = Self;
226 fn div(mut self, tensor_rank_0: TensorRank0) -> Self::Output {
227 self /= tensor_rank_0;
228 self
229 }
230}
231
232impl<const D: usize, const I: usize> Div<TensorRank0> for &TensorRank1<D, I> {
233 type Output = TensorRank1<D, I>;
234 fn div(self, tensor_rank_0: TensorRank0) -> Self::Output {
235 self.iter().map(|self_i| self_i / tensor_rank_0).collect()
236 }
237}
238
239impl<const D: usize, const I: usize> Div<&TensorRank0> for TensorRank1<D, I> {
240 type Output = Self;
241 fn div(mut self, tensor_rank_0: &TensorRank0) -> Self::Output {
242 self /= tensor_rank_0;
243 self
244 }
245}
246
247impl<const D: usize, const I: usize> Div<&TensorRank0> for &TensorRank1<D, I> {
248 type Output = TensorRank1<D, I>;
249 fn div(self, tensor_rank_0: &TensorRank0) -> Self::Output {
250 self.iter().map(|self_i| self_i / tensor_rank_0).collect()
251 }
252}
253
254impl<const D: usize, const I: usize> DivAssign<TensorRank0> for TensorRank1<D, I> {
255 fn div_assign(&mut self, tensor_rank_0: TensorRank0) {
256 self.iter_mut().for_each(|self_i| *self_i /= &tensor_rank_0);
257 }
258}
259
260impl<const D: usize, const I: usize> DivAssign<&TensorRank0> for TensorRank1<D, I> {
261 fn div_assign(&mut self, tensor_rank_0: &TensorRank0) {
262 self.iter_mut().for_each(|self_i| *self_i /= tensor_rank_0);
263 }
264}
265
266impl<const D: usize, const I: usize> Mul<TensorRank0> for TensorRank1<D, I> {
267 type Output = Self;
268 fn mul(mut self, tensor_rank_0: TensorRank0) -> Self::Output {
269 self *= tensor_rank_0;
270 self
271 }
272}
273
274impl<const D: usize, const I: usize> Mul<TensorRank0> for &TensorRank1<D, I> {
275 type Output = TensorRank1<D, I>;
276 fn mul(self, tensor_rank_0: TensorRank0) -> Self::Output {
277 self.iter().map(|self_i| self_i * tensor_rank_0).collect()
278 }
279}
280
281impl<const D: usize, const I: usize> Mul<&TensorRank0> for TensorRank1<D, I> {
282 type Output = Self;
283 fn mul(mut self, tensor_rank_0: &TensorRank0) -> Self::Output {
284 self *= tensor_rank_0;
285 self
286 }
287}
288
289impl<const D: usize, const I: usize> Mul<&TensorRank0> for &TensorRank1<D, I> {
290 type Output = TensorRank1<D, I>;
291 fn mul(self, tensor_rank_0: &TensorRank0) -> Self::Output {
292 self.iter().map(|self_i| self_i * tensor_rank_0).collect()
293 }
294}
295
296impl<const D: usize, const I: usize> MulAssign<TensorRank0> for TensorRank1<D, I> {
297 fn mul_assign(&mut self, tensor_rank_0: TensorRank0) {
298 self.iter_mut().for_each(|self_i| *self_i *= &tensor_rank_0);
299 }
300}
301
302impl<const D: usize, const I: usize> MulAssign<&TensorRank0> for TensorRank1<D, I> {
303 fn mul_assign(&mut self, tensor_rank_0: &TensorRank0) {
304 self.iter_mut().for_each(|self_i| *self_i *= tensor_rank_0);
305 }
306}
307
308impl<const D: usize, const I: usize> Add for TensorRank1<D, I> {
309 type Output = Self;
310 fn add(mut self, tensor_rank_1: Self) -> Self::Output {
311 self += tensor_rank_1;
312 self
313 }
314}
315
316impl<const D: usize, const I: usize> Add<&Self> for TensorRank1<D, I> {
317 type Output = Self;
318 fn add(mut self, tensor_rank_1: &Self) -> Self::Output {
319 self += tensor_rank_1;
320 self
321 }
322}
323
324impl<const D: usize, const I: usize> Add<TensorRank1<D, I>> for &TensorRank1<D, I> {
325 type Output = TensorRank1<D, I>;
326 fn add(self, mut tensor_rank_1: TensorRank1<D, I>) -> Self::Output {
327 tensor_rank_1 += self;
328 tensor_rank_1
329 }
330}
331
332impl<const D: usize, const I: usize> AddAssign for TensorRank1<D, I> {
333 fn add_assign(&mut self, tensor_rank_1: Self) {
334 self.iter_mut()
335 .zip(tensor_rank_1.iter())
336 .for_each(|(self_i, tensor_rank_1_i)| *self_i += tensor_rank_1_i);
337 }
338}
339
340impl<const D: usize, const I: usize> AddAssign<&Self> for TensorRank1<D, I> {
341 fn add_assign(&mut self, tensor_rank_1: &Self) {
342 self.iter_mut()
343 .zip(tensor_rank_1.iter())
344 .for_each(|(self_i, tensor_rank_1_i)| *self_i += tensor_rank_1_i);
345 }
346}
347
348impl<const D: usize, const I: usize> Sub for TensorRank1<D, I> {
349 type Output = Self;
350 fn sub(mut self, tensor_rank_1: Self) -> Self::Output {
351 self -= tensor_rank_1;
352 self
353 }
354}
355
356impl<const D: usize, const I: usize> Sub<&Self> for TensorRank1<D, I> {
357 type Output = Self;
358 fn sub(mut self, tensor_rank_1: &Self) -> Self::Output {
359 self -= tensor_rank_1;
360 self
361 }
362}
363
364impl<const D: usize, const I: usize> Sub<TensorRank1<D, I>> for &TensorRank1<D, I> {
365 type Output = TensorRank1<D, I>;
366 fn sub(self, mut tensor_rank_1: TensorRank1<D, I>) -> Self::Output {
367 tensor_rank_1
368 .iter_mut()
369 .zip(self.iter())
370 .for_each(|(tensor_rank_1_i, self_i)| *tensor_rank_1_i = self_i - *tensor_rank_1_i);
371 tensor_rank_1
372 }
373}
374
375impl<const D: usize, const I: usize> Sub<Self> for &TensorRank1<D, I> {
376 type Output = TensorRank1<D, I>;
377 fn sub(self, tensor_rank_1: Self) -> Self::Output {
378 tensor_rank_1
379 .iter()
380 .zip(self.iter())
381 .map(|(tensor_rank_1_i, self_i)| self_i - *tensor_rank_1_i)
382 .collect()
383 }
384}
385
386impl<const D: usize, const I: usize> SubAssign for TensorRank1<D, I> {
387 fn sub_assign(&mut self, tensor_rank_1: Self) {
388 self.iter_mut()
389 .zip(tensor_rank_1.iter())
390 .for_each(|(self_i, tensor_rank_1_i)| *self_i -= tensor_rank_1_i);
391 }
392}
393
394impl<const D: usize, const I: usize> SubAssign<&Self> for TensorRank1<D, I> {
395 fn sub_assign(&mut self, tensor_rank_1: &Self) {
396 self.iter_mut()
397 .zip(tensor_rank_1.iter())
398 .for_each(|(self_i, tensor_rank_1_i)| *self_i -= tensor_rank_1_i);
399 }
400}
401
402impl<const D: usize, const I: usize> Mul for TensorRank1<D, I> {
403 type Output = TensorRank0;
404 fn mul(self, tensor_rank_1: Self) -> Self::Output {
405 self.iter()
406 .zip(tensor_rank_1.iter())
407 .map(|(self_i, tensor_rank_1_i)| self_i * tensor_rank_1_i)
408 .sum()
409 }
410}
411
412impl<const D: usize, const I: usize> Mul<&Self> for TensorRank1<D, I> {
413 type Output = TensorRank0;
414 fn mul(self, tensor_rank_1: &Self) -> Self::Output {
415 self.iter()
416 .zip(tensor_rank_1.iter())
417 .map(|(self_i, tensor_rank_1_i)| self_i * tensor_rank_1_i)
418 .sum()
419 }
420}
421
422impl<const D: usize, const I: usize> Mul<TensorRank1<D, I>> for &TensorRank1<D, I> {
423 type Output = TensorRank0;
424 fn mul(self, tensor_rank_1: TensorRank1<D, I>) -> Self::Output {
425 self.iter()
426 .zip(tensor_rank_1.iter())
427 .map(|(self_i, tensor_rank_1_i)| self_i * tensor_rank_1_i)
428 .sum()
429 }
430}
431
432impl<const D: usize, const I: usize> Mul for &TensorRank1<D, I> {
433 type Output = TensorRank0;
434 fn mul(self, tensor_rank_1: Self) -> Self::Output {
435 self.iter()
436 .zip(tensor_rank_1.iter())
437 .map(|(self_i, tensor_rank_1_i)| self_i * tensor_rank_1_i)
438 .sum()
439 }
440}
441
442#[allow(clippy::suspicious_arithmetic_impl)]
443impl<const D: usize, const I: usize, const J: usize> Div<TensorRank2<D, I, J>>
444 for &TensorRank1<D, I>
445{
446 type Output = TensorRank1<D, J>;
447 fn div(self, tensor_rank_2: TensorRank2<D, I, J>) -> Self::Output {
448 tensor_rank_2.inverse() * self
449 }
450}