1#[cfg(test)]
2mod test;
3
4#[cfg(test)]
5use super::test::ErrorTensor;
6
7use std::{
8 array::from_fn,
9 fmt::{self, Display, Formatter},
10 iter::Sum,
11 ops::{Add, AddAssign, Div, DivAssign, Index, IndexMut, Mul, MulAssign, Sub, SubAssign},
12};
13
14use super::{
15 Tensor, TensorArray,
16 rank_0::TensorRank0,
17 rank_2::{
18 TensorRank2, get_identity_1010_parts_1, get_identity_1010_parts_2,
19 get_identity_1010_parts_3, get_levi_civita_parts,
20 },
21};
22
23pub fn levi_civita<const I: usize, const J: usize, const K: usize>() -> TensorRank3<3, I, J, K> {
25 TensorRank3::new([
26 [[0.0, 0.0, 0.0], [0.0, 0.0, 1.0], [0.0, -1.0, 0.0]],
27 [[0.0, 0.0, -1.0], [0.0, 0.0, 0.0], [1.0, 0.0, 0.0]],
28 [[0.0, 1.0, 0.0], [-1.0, 0.0, 0.0], [0.0, 0.0, 0.0]],
29 ])
30}
31
32#[repr(transparent)]
36#[derive(Clone, Debug, PartialEq)]
37pub struct TensorRank3<const D: usize, const I: usize, const J: usize, const K: usize>(
38 [TensorRank2<D, J, K>; D],
39);
40
41impl<const D: usize, const I: usize, const J: usize, const K: usize> Default
42 for TensorRank3<D, I, J, K>
43{
44 fn default() -> Self {
45 Self::zero()
46 }
47}
48
49pub const LEVI_CIVITA: TensorRank3<3, 1, 1, 1> = TensorRank3(get_levi_civita_parts());
50
51pub const fn get_identity_1010_parts<const I: usize, const J: usize, const K: usize>()
52-> [TensorRank3<3, I, J, K>; 3] {
53 [
54 TensorRank3(get_identity_1010_parts_1()),
55 TensorRank3(get_identity_1010_parts_2()),
56 TensorRank3(get_identity_1010_parts_3()),
57 ]
58}
59
60impl<const D: usize, const I: usize, const J: usize, const K: usize> Display
61 for TensorRank3<D, I, J, K>
62{
63 fn fmt(&self, f: &mut Formatter) -> fmt::Result {
64 write!(f, "[")?;
65 self.iter()
66 .enumerate()
67 .try_for_each(|(i, entry)| write!(f, "{entry},\n\x1B[u\x1B[{}B\x1B[1D", i + 1))?;
68 write!(f, "\x1B[u\x1B[1A\x1B[{}C]", 16 * D + 1)
69 }
70}
71
72#[cfg(test)]
73impl<const D: usize, const I: usize, const J: usize, const K: usize> ErrorTensor
74 for TensorRank3<D, I, J, K>
75{
76 fn error_fd(&self, comparator: &Self, epsilon: TensorRank0) -> Option<(bool, usize)> {
77 let error_count = self
78 .iter()
79 .zip(comparator.iter())
80 .map(|(self_i, comparator_i)| {
81 self_i
82 .iter()
83 .zip(comparator_i.iter())
84 .map(|(self_ij, comparator_ij)| {
85 self_ij
86 .iter()
87 .zip(comparator_ij.iter())
88 .filter(|&(&self_ijk, &comparator_ijk)| {
89 (self_ijk / comparator_ijk - 1.0).abs() >= epsilon
90 && (self_ijk.abs() >= epsilon
91 || comparator_ijk.abs() >= epsilon)
92 })
93 .count()
94 })
95 .sum::<usize>()
96 })
97 .sum();
98 if error_count > 0 {
99 Some((true, error_count))
100 } else {
101 None
102 }
103 }
104}
105
106impl<const D: usize, const I: usize, const J: usize, const K: usize> Tensor
107 for TensorRank3<D, I, J, K>
108{
109 type Item = TensorRank2<D, J, K>;
110 fn iter(&self) -> impl Iterator<Item = &Self::Item> {
111 self.0.iter()
112 }
113 fn iter_mut(&mut self) -> impl Iterator<Item = &mut Self::Item> {
114 self.0.iter_mut()
115 }
116 fn len(&self) -> usize {
117 D
118 }
119 fn size(&self) -> usize {
120 D * D * D
121 }
122}
123
124impl<const D: usize, const I: usize, const J: usize, const K: usize> IntoIterator
125 for TensorRank3<D, I, J, K>
126{
127 type Item = TensorRank2<D, J, K>;
128 type IntoIter = std::array::IntoIter<Self::Item, D>;
129 fn into_iter(self) -> Self::IntoIter {
130 self.0.into_iter()
131 }
132}
133
134impl<const D: usize, const I: usize, const J: usize, const K: usize> TensorArray
135 for TensorRank3<D, I, J, K>
136{
137 type Array = [[[TensorRank0; D]; D]; D];
138 type Item = TensorRank2<D, J, K>;
139 fn as_array(&self) -> Self::Array {
140 let mut array = [[[0.0; D]; D]; D];
141 array
142 .iter_mut()
143 .zip(self.iter())
144 .for_each(|(entry_rank_2, tensor_rank_2)| *entry_rank_2 = tensor_rank_2.as_array());
145 array
146 }
147 fn identity() -> Self {
148 panic!()
149 }
150 fn new(array: Self::Array) -> Self {
151 array.into_iter().map(Self::Item::new).collect()
152 }
153 fn zero() -> Self {
154 Self(from_fn(|_| Self::Item::zero()))
155 }
156}
157
158impl<const D: usize, const I: usize, const J: usize, const K: usize>
159 FromIterator<TensorRank2<D, J, K>> for TensorRank3<D, I, J, K>
160{
161 fn from_iter<Ii: IntoIterator<Item = TensorRank2<D, J, K>>>(into_iterator: Ii) -> Self {
162 let mut tensor_rank_3 = Self::zero();
163 tensor_rank_3
164 .iter_mut()
165 .zip(into_iterator)
166 .for_each(|(tensor_rank_3_i, value_i)| *tensor_rank_3_i = value_i);
167 tensor_rank_3
168 }
169}
170
171impl<const D: usize, const I: usize, const J: usize, const K: usize> Index<usize>
172 for TensorRank3<D, I, J, K>
173{
174 type Output = TensorRank2<D, J, K>;
175 fn index(&self, index: usize) -> &Self::Output {
176 &self.0[index]
177 }
178}
179
180impl<const D: usize, const I: usize, const J: usize, const K: usize> IndexMut<usize>
181 for TensorRank3<D, I, J, K>
182{
183 fn index_mut(&mut self, index: usize) -> &mut Self::Output {
184 &mut self.0[index]
185 }
186}
187
188impl<const D: usize, const I: usize, const J: usize, const K: usize> Sum
189 for TensorRank3<D, I, J, K>
190{
191 fn sum<Ii>(iter: Ii) -> Self
192 where
193 Ii: Iterator<Item = Self>,
194 {
195 iter.reduce(|mut acc, item| {
196 acc += item;
197 acc
198 })
199 .unwrap_or_else(Self::default)
200 }
201}
202
203impl<const D: usize, const I: usize, const J: usize, const K: usize> Div<TensorRank0>
204 for TensorRank3<D, I, J, K>
205{
206 type Output = Self;
207 fn div(mut self, tensor_rank_0: TensorRank0) -> Self::Output {
208 self /= &tensor_rank_0;
209 self
210 }
211}
212
213impl<const D: usize, const I: usize, const J: usize, const K: usize> Div<TensorRank0>
214 for &TensorRank3<D, I, J, K>
215{
216 type Output = TensorRank3<D, I, J, K>;
217 fn div(self, tensor_rank_0: TensorRank0) -> Self::Output {
218 self.iter().map(|self_i| self_i / tensor_rank_0).collect()
219 }
220}
221
222impl<const D: usize, const I: usize, const J: usize, const K: usize> Div<&TensorRank0>
223 for TensorRank3<D, I, J, K>
224{
225 type Output = Self;
226 fn div(mut self, tensor_rank_0: &TensorRank0) -> Self::Output {
227 self /= tensor_rank_0;
228 self
229 }
230}
231
232impl<const D: usize, const I: usize, const J: usize, const K: usize> DivAssign<TensorRank0>
233 for TensorRank3<D, I, J, K>
234{
235 fn div_assign(&mut self, tensor_rank_0: TensorRank0) {
236 self.iter_mut().for_each(|self_i| *self_i /= &tensor_rank_0);
237 }
238}
239
240impl<const D: usize, const I: usize, const J: usize, const K: usize> DivAssign<&TensorRank0>
241 for TensorRank3<D, I, J, K>
242{
243 fn div_assign(&mut self, tensor_rank_0: &TensorRank0) {
244 self.iter_mut().for_each(|self_i| *self_i /= tensor_rank_0);
245 }
246}
247
248impl<const D: usize, const I: usize, const J: usize, const K: usize> Mul<TensorRank0>
249 for TensorRank3<D, I, J, K>
250{
251 type Output = Self;
252 fn mul(mut self, tensor_rank_0: TensorRank0) -> Self::Output {
253 self *= &tensor_rank_0;
254 self
255 }
256}
257
258impl<const D: usize, const I: usize, const J: usize, const K: usize> Mul<&TensorRank0>
259 for TensorRank3<D, I, J, K>
260{
261 type Output = Self;
262 fn mul(mut self, tensor_rank_0: &TensorRank0) -> Self::Output {
263 self *= tensor_rank_0;
264 self
265 }
266}
267
268impl<const D: usize, const I: usize, const J: usize, const K: usize> Mul<TensorRank0>
269 for &TensorRank3<D, I, J, K>
270{
271 type Output = TensorRank3<D, I, J, K>;
272 fn mul(self, tensor_rank_0: TensorRank0) -> Self::Output {
273 self.iter().map(|self_i| self_i * tensor_rank_0).collect()
274 }
275}
276
277impl<const D: usize, const I: usize, const J: usize, const K: usize> Mul<&TensorRank0>
278 for &TensorRank3<D, I, J, K>
279{
280 type Output = TensorRank3<D, I, J, K>;
281 fn mul(self, tensor_rank_0: &TensorRank0) -> Self::Output {
282 self.iter().map(|self_i| self_i * tensor_rank_0).collect()
283 }
284}
285
286impl<const D: usize, const I: usize, const J: usize, const K: usize> MulAssign<TensorRank0>
287 for TensorRank3<D, I, J, K>
288{
289 fn mul_assign(&mut self, tensor_rank_0: TensorRank0) {
290 self.iter_mut().for_each(|self_i| *self_i *= &tensor_rank_0);
291 }
292}
293
294impl<const D: usize, const I: usize, const J: usize, const K: usize> MulAssign<&TensorRank0>
295 for TensorRank3<D, I, J, K>
296{
297 fn mul_assign(&mut self, tensor_rank_0: &TensorRank0) {
298 self.iter_mut().for_each(|self_i| *self_i *= tensor_rank_0);
299 }
300}
301
302impl<const D: usize, const I: usize, const J: usize, const K: usize> Add
303 for TensorRank3<D, I, J, K>
304{
305 type Output = Self;
306 fn add(mut self, tensor_rank_3: Self) -> Self::Output {
307 self += tensor_rank_3;
308 self
309 }
310}
311
312impl<const D: usize, const I: usize, const J: usize, const K: usize> Add<&Self>
313 for TensorRank3<D, I, J, K>
314{
315 type Output = Self;
316 fn add(mut self, tensor_rank_3: &Self) -> Self::Output {
317 self += tensor_rank_3;
318 self
319 }
320}
321
322impl<const D: usize, const I: usize, const J: usize, const K: usize> Add<TensorRank3<D, I, J, K>>
323 for &TensorRank3<D, I, J, K>
324{
325 type Output = TensorRank3<D, I, J, K>;
326 fn add(self, mut tensor_rank_3: TensorRank3<D, I, J, K>) -> Self::Output {
327 tensor_rank_3 += self;
328 tensor_rank_3
329 }
330}
331
332impl<const D: usize, const I: usize, const J: usize, const K: usize> AddAssign
333 for TensorRank3<D, I, J, K>
334{
335 fn add_assign(&mut self, tensor_rank_3: Self) {
336 self.iter_mut()
337 .zip(tensor_rank_3)
338 .for_each(|(self_i, tensor_rank_3_i)| *self_i += tensor_rank_3_i);
339 }
340}
341
342impl<const D: usize, const I: usize, const J: usize, const K: usize> AddAssign<&Self>
343 for TensorRank3<D, I, J, K>
344{
345 fn add_assign(&mut self, tensor_rank_3: &Self) {
346 self.iter_mut()
347 .zip(tensor_rank_3.iter())
348 .for_each(|(self_i, tensor_rank_3_i)| *self_i += tensor_rank_3_i);
349 }
350}
351
352impl<const D: usize, const I: usize, const J: usize, const K: usize> Sub
353 for TensorRank3<D, I, J, K>
354{
355 type Output = Self;
356 fn sub(mut self, tensor_rank_3: Self) -> Self::Output {
357 self -= tensor_rank_3;
358 self
359 }
360}
361
362impl<const D: usize, const I: usize, const J: usize, const K: usize> Sub<&Self>
363 for TensorRank3<D, I, J, K>
364{
365 type Output = Self;
366 fn sub(mut self, tensor_rank_3: &Self) -> Self::Output {
367 self -= tensor_rank_3;
368 self
369 }
370}
371
372impl<const D: usize, const I: usize, const J: usize, const K: usize> Sub
373 for &TensorRank3<D, I, J, K>
374{
375 type Output = TensorRank3<D, I, J, K>;
376 fn sub(self, tensor_rank_3: Self) -> Self::Output {
377 tensor_rank_3
378 .iter()
379 .zip(self.iter())
380 .map(|(tensor_rank_3_i, self_i)| self_i - tensor_rank_3_i)
381 .collect()
382 }
383}
384
385impl<const D: usize, const I: usize, const J: usize, const K: usize> SubAssign
386 for TensorRank3<D, I, J, K>
387{
388 fn sub_assign(&mut self, tensor_rank_3: Self) {
389 self.iter_mut()
390 .zip(tensor_rank_3)
391 .for_each(|(self_i, tensor_rank_3_i)| *self_i -= tensor_rank_3_i);
392 }
393}
394
395impl<const D: usize, const I: usize, const J: usize, const K: usize> SubAssign<&Self>
396 for TensorRank3<D, I, J, K>
397{
398 fn sub_assign(&mut self, tensor_rank_3: &Self) {
399 self.iter_mut()
400 .zip(tensor_rank_3.iter())
401 .for_each(|(self_i, tensor_rank_3_i)| *self_i -= tensor_rank_3_i);
402 }
403}