conspire/mechanics/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
//! Mechanics library.

#[cfg(test)]
pub mod test;

use crate::{
    defeat_message,
    math::{
        Rank2, Tensor, TensorRank0, TensorRank0List, TensorRank1, TensorRank1List,
        TensorRank1List2D, TensorRank2, TensorRank2List, TensorRank2List2D, TensorRank4,
        TensorRank4List,
    },
};
use std::fmt;

/// Possible errors for deformation gradients.
pub enum DeformationError {
    InvalidJacobian(Scalar, DeformationGradient),
}

impl fmt::Debug for DeformationError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let error = match self {
            Self::InvalidJacobian(jacobian, deformation_gradient) => {
                format!(
                    "\x1b[1;91mInvalid Jacobian: {:.6e}.\x1b[0;91m\n\
                     From deformation gradient: {}.",
                    jacobian, deformation_gradient
                )
            }
        };
        write!(f, "\n{}\n\x1b[0;2;31m{}\x1b[0m\n", error, defeat_message())
    }
}

impl fmt::Display for DeformationError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let error = match self {
            Self::InvalidJacobian(jacobian, deformation_gradient) => {
                format!(
                    "\x1b[1;91mInvalid Jacobian: {:.6e}.\x1b[0;91m\n\
                     From deformation gradient: {}.",
                    jacobian, deformation_gradient
                )
            }
        };
        write!(f, "\n{}\n\x1b[0;2;31m{}\x1b[0m\n", error, defeat_message())
    }
}

/// Methods for deformation gradients.
pub trait Deformation {
    /// Calculates and returns the Jacobian.
    ///
    /// ```math
    /// J = \mathrm{det}(\mathbf{F})
    /// ```
    fn jacobian(&self) -> Result<Scalar, DeformationError>;
    /// Calculates and returns the left Cauchy-Green deformation.
    ///
    /// ```math
    /// \mathbf{B} = \mathbf{F}\cdot\mathbf{F}^T
    /// ```
    fn left_cauchy_green(&self) -> LeftCauchyGreenDeformation;
    /// Calculates and returns the right Cauchy-Green deformation.
    ///
    /// ```math
    /// \mathbf{C} = \mathbf{F}^T\cdot\mathbf{F}
    /// ```
    fn right_cauchy_green(&self) -> RightCauchyGreenDeformation;
}

impl Deformation for DeformationGradient {
    fn jacobian(&self) -> Result<Scalar, DeformationError> {
        let jacobian = self.determinant();
        if jacobian > 0.0 {
            Ok(jacobian)
        } else {
            Err(DeformationError::InvalidJacobian(jacobian, self.clone()))
        }
    }
    fn left_cauchy_green(&self) -> LeftCauchyGreenDeformation {
        self.iter()
            .map(|deformation_gradient_i| {
                self.iter()
                    .map(|deformation_gradient_j| deformation_gradient_i * deformation_gradient_j)
                    .collect()
            })
            .collect()
    }
    fn right_cauchy_green(&self) -> RightCauchyGreenDeformation {
        let deformation_gradient_transpose = self.transpose();
        deformation_gradient_transpose
            .iter()
            .map(|deformation_gradient_transpose_i| {
                deformation_gradient_transpose
                    .iter()
                    .map(|deformation_gradient_transpose_j| {
                        deformation_gradient_transpose_i * deformation_gradient_transpose_j
                    })
                    .collect()
            })
            .collect()
    }
}

/// The Cauchy stress $`\boldsymbol{\sigma}`$.
pub type CauchyStress = TensorRank2<3, 1, 1>;

/// A list of Cauchy stresses.
pub type CauchyStresses<const W: usize> = TensorRank2List<3, 1, 1, W>;

/// The tangent stiffness associated with the Cauchy stress $`\boldsymbol{\mathcal{T}}`$.
pub type CauchyTangentStiffness = TensorRank4<3, 1, 1, 1, 0>;

/// The rate tangent stiffness associated with the Cauchy stress $`\boldsymbol{\mathcal{V}}`$.
pub type CauchyRateTangentStiffness = TensorRank4<3, 1, 1, 1, 0>;

/// A list of coordinates.
pub type Coordinates<const I: usize, const W: usize> = TensorRank1List<3, I, W>;

/// A coordinate in the current configuration.
pub type CurrentCoordinate = TensorRank1<3, 1>;

/// A list of coordinates in the current configuration.
pub type CurrentCoordinates<const W: usize> = TensorRank1List<3, 1, W>;

/// A velocity in the current configuration.
pub type CurrentVelocity = TensorRank1<3, 1>;

/// The deformation gradient $`\mathbf{F}`$.
pub type DeformationGradient = TensorRank2<3, 1, 0>;

/// The elastic deformation gradient $`\mathbf{F}_\mathrm{e}`$.
pub type DeformationGradientElastic = TensorRank2<3, 1, 2>;

/// A general deformation gradient.
pub type DeformationGradientGeneral<const I: usize, const J: usize> = TensorRank2<3, I, J>;

/// The plastic deformation gradient $`\mathbf{F}_\mathrm{p}`$.
pub type DeformationGradientPlastic = TensorRank2<3, 2, 0>;

/// The deformation gradient rate $`\dot{\mathbf{F}}`$.
pub type DeformationGradientRate = TensorRank2<3, 1, 0>;

/// The plastic deformation gradient rate $`\dot{\mathbf{F}}_\mathrm{p}`$.
pub type DeformationGradientRatePlastic = TensorRank2<3, 2, 0>;

/// A list of deformation gradients.
pub type DeformationGradients<const W: usize> = TensorRank2List<3, 1, 0, W>;

/// A list of deformation gradient rates.
pub type DeformationGradientRates<const W: usize> = TensorRank2List<3, 1, 0, W>;

/// A displacement.
pub type Displacement = TensorRank1<3, 1>;

/// The first Piola-Kirchhoff stress $`\mathbf{P}`$.
pub type FirstPiolaKirchhoffStress = TensorRank2<3, 1, 0>;

/// A list of first Piola-Kirchhoff stresses.
pub type FirstPiolaKirchhoffStresses<const W: usize> = TensorRank2List<3, 1, 0, W>;

/// The tangent stiffness associated with the first Piola-Kirchhoff stress $`\boldsymbol{\mathcal{C}}`$.
pub type FirstPiolaKirchhoffTangentStiffness = TensorRank4<3, 1, 0, 1, 0>;

/// A list of first Piola-Kirchhoff tangent stiffnesses.
pub type FirstPiolaKirchhoffTangentStiffnesses<const W: usize> = TensorRank4List<3, 1, 0, 1, 0, W>;

/// The rate tangent stiffness associated with the first Piola-Kirchhoff stress $`\boldsymbol{\mathcal{U}}`$.
pub type FirstPiolaKirchhoffRateTangentStiffness = TensorRank4<3, 1, 0, 1, 0>;

/// A list of first Piola-Kirchhoff rate tangent stiffnesses.
pub type FirstPiolaKirchhoffRateTangentStiffnesses<const W: usize> =
    TensorRank4List<3, 1, 0, 1, 0, W>;

/// A force.
pub type Force = TensorRank1<3, 1>;

/// A list of forces.
pub type Forces<const W: usize> = TensorRank1List<3, 1, W>;

/// The frame spin $`\mathbf{\Omega}=\dot{\mathbf{Q}}\cdot\mathbf{Q}^T`$.
pub type FrameSpin = TensorRank2<3, 1, 1>;

/// The heat flux.
pub type HeatFlux = TensorRank1<3, 1>;

/// The left Cauchy-Green deformation $`\mathbf{B}`$.
pub type LeftCauchyGreenDeformation = TensorRank2<3, 1, 1>;

/// The Mandel stress $`\mathbf{M}`$.
pub type MandelStress = TensorRank2<3, 2, 2>;

/// A normal.
pub type Normal = TensorRank1<3, 1>;

/// A coordinate in the reference configuration.
pub type ReferenceCoordinate = TensorRank1<3, 0>;

/// A list of coordinates in the reference configuration.
pub type ReferenceCoordinates<const W: usize> = TensorRank1List<3, 0, W>;

/// The right Cauchy-Green deformation $`\mathbf{C}`$.
pub type RightCauchyGreenDeformation = TensorRank2<3, 0, 0>;

/// The rotation of the current configuration $`\mathbf{Q}`$.
pub type RotationCurrentConfiguration = TensorRank2<3, 1, 1>;

/// The rate of rotation of the current configuration $`\dot{\mathbf{Q}}`$.
pub type RotationRateCurrentConfiguration = TensorRank2<3, 1, 1>;

/// The rotation of the reference configuration $`\mathbf{Q}_0`$.
pub type RotationReferenceConfiguration = TensorRank2<3, 0, 0>;

/// A scalar.
pub type Scalar = TensorRank0;

/// A list of scalars.
pub type Scalars<const W: usize> = TensorRank0List<W>;

/// The second Piola-Kirchhoff stress $`\mathbf{S}`$.
pub type SecondPiolaKirchhoffStress = TensorRank2<3, 0, 0>;

/// The tangent stiffness associated with the second Piola-Kirchhoff stress $`\boldsymbol{\mathcal{G}}`$.
pub type SecondPiolaKirchhoffTangentStiffness = TensorRank4<3, 0, 0, 1, 0>;

/// The rate tangent stiffness associated with the second Piola-Kirchhoff stress $`\boldsymbol{\mathcal{W}}`$.
pub type SecondPiolaKirchhoffRateTangentStiffness = TensorRank4<3, 0, 0, 1, 0>;

/// A stiffness resulting from a force.
pub type Stiffness = TensorRank2<3, 1, 1>;

/// A list of stiffnesses.
pub type Stiffnesses<const W: usize> = TensorRank2List2D<3, 1, 1, W, W>;

/// The stretching rate $`\mathbf{D}`$.
pub type StretchingRate = TensorRank2<3, 1, 1>;

/// The plastic stretching rate $`\mathbf{D}^\mathrm{p}`$.
pub type StretchingRatePlastic = TensorRank2<3, 2, 2>;

/// The temperature gradient.
pub type TemperatureGradient = TensorRank1<3, 1>;

/// A traction.
pub type Traction = TensorRank1<3, 1>;

/// A vector.
pub type Vector<const I: usize> = TensorRank1<3, I>;

/// A list of vectors.
pub type Vectors<const I: usize, const W: usize> = TensorRank1List<3, I, W>;

/// A 2D list of vectors.
pub type Vectors2D<const I: usize, const W: usize, const X: usize> = TensorRank1List2D<3, I, W, X>;