pub struct GradientDescent {
pub abs_tol: TensorRank0,
pub max_steps: usize,
}
Expand description
The method of gradient descent.
Fields§
§abs_tol: TensorRank0
Absolute error tolerance.
max_steps: usize
Maximum number of steps.
Trait Implementations§
Source§impl Debug for GradientDescent
impl Debug for GradientDescent
Source§impl Default for GradientDescent
impl Default for GradientDescent
Source§impl<F, X> FirstOrderOptimization<F, X> for GradientDescentwhere
X: Tensor,
impl<F, X> FirstOrderOptimization<F, X> for GradientDescentwhere
X: Tensor,
fn minimize( &self, _function: impl Fn(&X) -> Result<F, OptimizeError>, jacobian: impl Fn(&X) -> Result<X, OptimizeError>, initial_guess: X, equality_constraint: EqualityConstraint, ) -> Result<X, OptimizeError>
Source§impl<X> ZerothOrderRootFinding<X> for GradientDescentwhere
X: Tensor,
impl<X> ZerothOrderRootFinding<X> for GradientDescentwhere
X: Tensor,
fn root( &self, function: impl Fn(&X) -> Result<X, OptimizeError>, initial_guess: X, equality_constraint: EqualityConstraint, ) -> Result<X, OptimizeError>
Auto Trait Implementations§
impl Freeze for GradientDescent
impl RefUnwindSafe for GradientDescent
impl Send for GradientDescent
impl Sync for GradientDescent
impl Unpin for GradientDescent
impl UnwindSafe for GradientDescent
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more