pub struct GradientDescent {
pub abs_tol: Scalar,
pub dual: bool,
pub line_search: LineSearch,
pub max_steps: usize,
pub rel_tol: Option<Scalar>,
}Expand description
The method of gradient descent.
Fields§
§abs_tol: ScalarAbsolute error tolerance.
dual: boolLagrangian dual.
line_search: LineSearchLine search algorithm.
max_steps: usizeMaximum number of steps.
rel_tol: Option<Scalar>Relative error tolerance.
Trait Implementations§
Source§impl Debug for GradientDescent
impl Debug for GradientDescent
Source§impl Default for GradientDescent
impl Default for GradientDescent
Source§impl<X> FirstOrderOptimization<f64, X> for GradientDescent
impl<X> FirstOrderOptimization<f64, X> for GradientDescent
Source§impl<X> ZerothOrderRootFinding<X> for GradientDescent
impl<X> ZerothOrderRootFinding<X> for GradientDescent
fn root( &self, function: impl Fn(&X) -> Result<X, String>, initial_guess: X, equality_constraint: EqualityConstraint, ) -> Result<X, OptimizationError>
Auto Trait Implementations§
impl Freeze for GradientDescent
impl RefUnwindSafe for GradientDescent
impl Send for GradientDescent
impl Sync for GradientDescent
impl Unpin for GradientDescent
impl UnwindSafe for GradientDescent
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more