Introduction

c o n s p i r e

User Guide

Reference Guide

Installation

book license conda docker

Julia

pkg docs

pkg> add Conspire

Python

pypi docs

pip install conspire

Rust

crates docs

cargo add conspire

Mathematics

Special functions

Lambert W function

2025-05-02T15:33:39.466058 image/svg+xml Matplotlib v3.10.1, https://matplotlib.org/

Langevin function

2025-05-02T15:33:39.258386 image/svg+xml Matplotlib v3.10.1, https://matplotlib.org/

Inverse Langevin function

2025-05-02T15:33:39.393856 image/svg+xml Matplotlib v3.10.1, https://matplotlib.org/

Constitutive

Solid constitutive models

Elastic constitutive models

Elastic constitutive models cannot be defined by a Helmholtz free energy density but still depend on only the deformation gradient. These constitutive models are therefore defined by a relation for some stress measure as a function of the deformation gradient. Consequently, the tangent stiffness associated with the first Piola-Kirchhoff stress is not symmetric for elastic constitutive models.

Almansi-Hamel model

The Almansi-Hamel elastic constitutive model.

Parameters

  • The bulk modulus .
  • The shear modulus .

External variables

  • The deformation gradient .

Internal variables

  • None.

Notes

  • The Almansi-Hamel strain measure is given by .

Cauchy stress

Cauchy tangent stiffness

Hyperelastic constitutive models

Hyperelastic constitutive models are completely defined by a Helmholtz free energy density function of the deformation gradient.

Satisfying the second law of thermodynamics (here, equivalent to extremized or zero dissipation) yields a relation for the stress.

Consequently, the tangent stiffness associated with the first Piola-Kirchhoff stress is symmetric for hyperelastic constitutive models.

Arruda-Boyce model

The Arruda-Boyce hyperelastic constitutive model.1

Parameters

  • The bulk modulus .
  • The shear modulus .
  • The number of links .

External variables

  • The deformation gradient .

Internal variables

  • None.

Notes

  • The nondimensional end-to-end length per link of the chains is .
  • The nondimensional force is given by the inverse Langevin function as .
  • The initial values are given by and .
  • The Arruda-Boyce model reduces to the Neo-Hookean model when .

Helmholtz free energy density

Cauchy stress

Cauchy tangent stiffness


  1. E.M. Arruda and M.C. Boyce, J. Mech. Phys. Solids 41, 389 (1993).

Fung model

The Fung hyperelastic constitutive model.1

Parameters

  • The bulk modulus .
  • The shear modulus .
  • The extra modulus .
  • The exponent .

External variables

  • The deformation gradient .

Internal variables

  • None.

Notes

Helmholtz free energy density

Cauchy stress

Cauchy tangent stiffness


  1. Y.C. Fung, Am. J. Physiol. 213, 1532 (1967).

Gent model

The Gent hyperelastic constitutive model.1

Parameters

  • The bulk modulus .
  • The shear modulus .
  • The extensibility .

External variables

  • The deformation gradient .

Internal variables

  • None.

Notes

Helmholtz free energy density

Cauchy stress

Cauchy tangent stiffness


  1. A.N. Gent, Rubber Chem. Technol. 69, 59 (1996).

Mooney-Rivlin model

The Mooney-Rivlin hyperelastic constitutive model.1,2

Parameters

  • The bulk modulus .
  • The shear modulus .
  • The extra modulus .

External variables

  • The deformation gradient .

Internal variables

  • None.

Notes

Helmholtz free energy density

Cauchy stress

Cauchy tangent stiffness


  1. M. Mooney, J. Appl. Phys. 11, 582 (1940).

  2. R.S. Rivlin, Philos. Trans. R. Soc. London, Ser. A 241, 379 (1948).

Neo-Hookean model

The Neo-Hookean hyperelastic constitutive model.1

Parameters

  • The bulk modulus .
  • The shear modulus .

External variables

  • The deformation gradient .

Internal variables

  • None.

Helmholtz free energy density

Cauchy stress

Cauchy tangent stiffness


  1. R.S. Rivlin, Philos. Trans. R. Soc. London, Ser. A 240, 459 (1948).

Saint Venant-Kirchhoff model

The Saint Venant-Kirchhoff hyperelastic constitutive model.

Parameters

  • The bulk modulus .
  • The shear modulus .

External variables

  • The deformation gradient .

Internal variables

  • None.

Notes

  • The Green-Saint Venant strain measure is given by .

Helmholtz free energy density

Second Piola-Kirchhoff stress

Second Piola-Kirchhoff tangent stiffness

Yeoh model

The Yeoh hyperelastic constitutive model.1

Parameters

  • The bulk modulus .
  • The shear modulus .
  • The extra moduli for .

External variables

  • The deformation gradient .

Internal variables

  • None.

Notes

Helmholtz free energy density

Cauchy stress

Cauchy tangent stiffness


  1. O.H. Yeoh, Rubber Chem. Technol. 66, 754 (1993).

Julia interface

Python interface

Rust interface

Contributors