Introduction
c o n s p i r e
User Guide
Reference Guide
Installation
Julia
pkg> add Conspire
Python
pip install conspire
Rust
cargo add conspire
Mathematics
Special functions
Lambert W function
Langevin function
Inverse Langevin function
Constitutive
Solid constitutive models
Elastic constitutive models
Elastic constitutive models cannot be defined by a Helmholtz free energy density but still depend on only the deformation gradient. These constitutive models are therefore defined by a relation for some stress measure as a function of the deformation gradient. Consequently, the tangent stiffness associated with the first Piola-Kirchhoff stress is not symmetric for elastic constitutive models.
Almansi-Hamel model
The Almansi-Hamel elastic constitutive model.
Parameters
- The bulk modulus .
- The shear modulus .
External variables
- The deformation gradient .
Internal variables
- None.
Notes
- The Almansi-Hamel strain measure is given by .
Cauchy stress
Cauchy tangent stiffness
Hyperelastic constitutive models
Hyperelastic constitutive models are completely defined by a Helmholtz free energy density function of the deformation gradient.
Satisfying the second law of thermodynamics (here, equivalent to extremized or zero dissipation) yields a relation for the stress.
Consequently, the tangent stiffness associated with the first Piola-Kirchhoff stress is symmetric for hyperelastic constitutive models.
- Arruda-Boyce model
- Fung model
- Gent model
- Mooney-Rivlin model
- Neo-Hookean model
- Saint Venant-Kirchhoff model
- Yeoh model
Arruda-Boyce model
The Arruda-Boyce hyperelastic constitutive model.1
Parameters
- The bulk modulus .
- The shear modulus .
- The number of links .
External variables
- The deformation gradient .
Internal variables
- None.
Notes
- The nondimensional end-to-end length per link of the chains is .
- The nondimensional force is given by the inverse Langevin function as .
- The initial values are given by and .
- The Arruda-Boyce model reduces to the Neo-Hookean model when .
Helmholtz free energy density
Cauchy stress
Cauchy tangent stiffness
-
E.M. Arruda and M.C. Boyce, J. Mech. Phys. Solids 41, 389 (1993). ↩
Fung model
The Fung hyperelastic constitutive model.1
Parameters
- The bulk modulus .
- The shear modulus .
- The extra modulus .
- The exponent .
External variables
- The deformation gradient .
Internal variables
- None.
Notes
- The Fung model reduces to the Neo-Hookean model when or .
Helmholtz free energy density
Cauchy stress
Cauchy tangent stiffness
-
Y.C. Fung, Am. J. Physiol. 213, 1532 (1967). ↩
Gent model
The Gent hyperelastic constitutive model.1
Parameters
- The bulk modulus .
- The shear modulus .
- The extensibility .
External variables
- The deformation gradient .
Internal variables
- None.
Notes
- The Gent model reduces to the Neo-Hookean model when .
Helmholtz free energy density
Cauchy stress
Cauchy tangent stiffness
-
A.N. Gent, Rubber Chem. Technol. 69, 59 (1996). ↩
Mooney-Rivlin model
The Mooney-Rivlin hyperelastic constitutive model.1,2
Parameters
- The bulk modulus .
- The shear modulus .
- The extra modulus .
External variables
- The deformation gradient .
Internal variables
- None.
Notes
- The Mooney-Rivlin model reduces to the Neo-Hookean model when .
Helmholtz free energy density
Cauchy stress
Cauchy tangent stiffness
-
M. Mooney, J. Appl. Phys. 11, 582 (1940). ↩
-
R.S. Rivlin, Philos. Trans. R. Soc. London, Ser. A 241, 379 (1948). ↩
Neo-Hookean model
The Neo-Hookean hyperelastic constitutive model.1
Parameters
- The bulk modulus .
- The shear modulus .
External variables
- The deformation gradient .
Internal variables
- None.
Helmholtz free energy density
Cauchy stress
Cauchy tangent stiffness
-
R.S. Rivlin, Philos. Trans. R. Soc. London, Ser. A 240, 459 (1948). ↩
Saint Venant-Kirchhoff model
The Saint Venant-Kirchhoff hyperelastic constitutive model.
Parameters
- The bulk modulus .
- The shear modulus .
External variables
- The deformation gradient .
Internal variables
- None.
Notes
- The Green-Saint Venant strain measure is given by .
Helmholtz free energy density
Second Piola-Kirchhoff stress
Second Piola-Kirchhoff tangent stiffness
Yeoh model
The Yeoh hyperelastic constitutive model.1
Parameters
- The bulk modulus .
- The shear modulus .
- The extra moduli for .
External variables
- The deformation gradient .
Internal variables
- None.
Notes
- The Yeoh model reduces to the Neo-Hookean model when for .
Helmholtz free energy density
Cauchy stress
Cauchy tangent stiffness
-
O.H. Yeoh, Rubber Chem. Technol. 66, 754 (1993). ↩