pub struct ElasticMultiplicative<C1, C2>{ /* private fields */ }Expand description
A hybrid elastic constitutive model based on the multiplicative decomposition.
Trait Implementations§
Source§impl<C1, C2> Clone for ElasticMultiplicative<C1, C2>
impl<C1, C2> Clone for ElasticMultiplicative<C1, C2>
Source§fn clone(&self) -> ElasticMultiplicative<C1, C2>
fn clone(&self) -> ElasticMultiplicative<C1, C2>
Returns a duplicate of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moreSource§impl<C1, C2> Debug for ElasticMultiplicative<C1, C2>
impl<C1, C2> Debug for ElasticMultiplicative<C1, C2>
Source§impl<C1, C2> Deref for ElasticMultiplicative<C1, C2>
impl<C1, C2> Deref for ElasticMultiplicative<C1, C2>
Source§impl<C1, C2> ElasticIV<TensorRank2<3, 2, 0>, TensorRank4<3, 2, 0, 1, 0>, TensorRank4<3, 1, 0, 2, 0>, TensorRank4<3, 2, 0, 2, 0>> for ElasticMultiplicative<C1, C2>
impl<C1, C2> ElasticIV<TensorRank2<3, 2, 0>, TensorRank4<3, 2, 0, 1, 0>, TensorRank4<3, 1, 0, 2, 0>, TensorRank4<3, 2, 0, 2, 0>> for ElasticMultiplicative<C1, C2>
Source§fn cauchy_stress(
&self,
deformation_gradient: &DeformationGradient,
deformation_gradient_2: &DeformationGradient2,
) -> Result<CauchyStress, ConstitutiveError>
fn cauchy_stress( &self, deformation_gradient: &DeformationGradient, deformation_gradient_2: &DeformationGradient2, ) -> Result<CauchyStress, ConstitutiveError>
Calculates and returns the Cauchy stress.
\boldsymbol{\sigma} = \frac{1}{J_2}\,\boldsymbol{\sigma}_1Source§fn cauchy_tangent_stiffness(
&self,
deformation_gradient: &DeformationGradient,
deformation_gradient_2: &DeformationGradient2,
) -> Result<CauchyTangentStiffness, ConstitutiveError>
fn cauchy_tangent_stiffness( &self, deformation_gradient: &DeformationGradient, deformation_gradient_2: &DeformationGradient2, ) -> Result<CauchyTangentStiffness, ConstitutiveError>
Calculates and returns the tangent stiffness associated with the Cauchy stress.
\boldsymbol{\mathcal{T}} = \frac{1}{J_2}\,\boldsymbol{\mathcal{T}}_1\cdot\mathbf{F}_2^{-T}Source§fn first_piola_kirchhoff_stress(
&self,
deformation_gradient: &DeformationGradient,
deformation_gradient_2: &DeformationGradient2,
) -> Result<FirstPiolaKirchhoffStress, ConstitutiveError>
fn first_piola_kirchhoff_stress( &self, deformation_gradient: &DeformationGradient, deformation_gradient_2: &DeformationGradient2, ) -> Result<FirstPiolaKirchhoffStress, ConstitutiveError>
Calculates and returns the first Piola-Kirchhoff stress.
\mathbf{P} = \mathbf{P}_1\cdot\mathbf{F}_2^{-T}Source§fn second_piola_kirchhoff_stress(
&self,
deformation_gradient: &DeformationGradient,
deformation_gradient_2: &DeformationGradient2,
) -> Result<SecondPiolaKirchhoffStress, ConstitutiveError>
fn second_piola_kirchhoff_stress( &self, deformation_gradient: &DeformationGradient, deformation_gradient_2: &DeformationGradient2, ) -> Result<SecondPiolaKirchhoffStress, ConstitutiveError>
Calculates and returns the second Piola-Kirchhoff stress.
\mathbf{S} = \mathbf{F}_2^{-1}\cdot\mathbf{S}_1\cdot\mathbf{F}_2^{-T}Source§fn internal_variables_residual(
&self,
deformation_gradient: &DeformationGradient,
deformation_gradient_2: &DeformationGradient2,
) -> Result<DeformationGradient2, ConstitutiveError>
fn internal_variables_residual( &self, deformation_gradient: &DeformationGradient, deformation_gradient_2: &DeformationGradient2, ) -> Result<DeformationGradient2, ConstitutiveError>
Calculates and returns the residual associated with the second deformation gradient.
\mathbf{R} = \mathbf{P}_2 - \mathbf{M}_1\cdot\mathbf{F}_2^{-T}Source§fn internal_variables_tangents(
&self,
deformation_gradient: &DeformationGradient,
deformation_gradient_2: &DeformationGradient2,
) -> Result<(TensorRank4<3, 2, 0, 1, 0>, TensorRank4<3, 1, 0, 2, 0>, FirstPiolaKirchhoffTangentStiffness2), ConstitutiveError>
fn internal_variables_tangents( &self, deformation_gradient: &DeformationGradient, deformation_gradient_2: &DeformationGradient2, ) -> Result<(TensorRank4<3, 2, 0, 1, 0>, TensorRank4<3, 1, 0, 2, 0>, FirstPiolaKirchhoffTangentStiffness2), ConstitutiveError>
Calculates and returns the tangents associated with the internal variables.
\frac{\partial P_{iJ}}{\partial F_{KL}^2} = -P_{iL}F_{KJ}^{2-T} - \mathcal{C}_{iJmL}F_{mK}^1\frac{\partial R_{IJ}}{\partial F_{kL}} = -F_{IL}^{2-T}P_{kJ} - F_{mI}^1\mathcal{C}_{mJkL}\frac{\partial R_{IJ}}{\partial F_{KL}^2} = \mathcal{C}_{IJKL}^2 + F_{IM}^1P_{ML}{F_{KJ}^{2-T}} - \frac{\partial R_{IJ}}{\partial F_{mL}}\,F_{mK}^1Source§fn internal_variables_initial(&self) -> DeformationGradient2
fn internal_variables_initial(&self) -> DeformationGradient2
Returns the initial value for the internal variables.
Source§fn internal_variables_constraints(&self) -> (&[usize], usize)
fn internal_variables_constraints(&self) -> (&[usize], usize)
Returns the constraint indices for the internal variables.
Source§fn first_piola_kirchhoff_tangent_stiffness(
&self,
deformation_gradient: &DeformationGradient,
internal_variables: &V,
) -> Result<FirstPiolaKirchhoffTangentStiffness, ConstitutiveError>
fn first_piola_kirchhoff_tangent_stiffness( &self, deformation_gradient: &DeformationGradient, internal_variables: &V, ) -> Result<FirstPiolaKirchhoffTangentStiffness, ConstitutiveError>
Calculates and returns the tangent stiffness associated with the first Piola-Kirchhoff stress. Read more
Source§fn second_piola_kirchhoff_tangent_stiffness(
&self,
deformation_gradient: &DeformationGradient,
internal_variables: &V,
) -> Result<SecondPiolaKirchhoffTangentStiffness, ConstitutiveError>
fn second_piola_kirchhoff_tangent_stiffness( &self, deformation_gradient: &DeformationGradient, internal_variables: &V, ) -> Result<SecondPiolaKirchhoffTangentStiffness, ConstitutiveError>
Calculates and returns the tangent stiffness associated with the second Piola-Kirchhoff stress. Read more
Source§impl<C1, C2> From<(C1, C2)> for ElasticMultiplicative<C1, C2>
impl<C1, C2> From<(C1, C2)> for ElasticMultiplicative<C1, C2>
Source§impl<C1, C2> HyperelasticIV<TensorRank2<3, 2, 0>, TensorRank4<3, 2, 0, 1, 0>, TensorRank4<3, 1, 0, 2, 0>, TensorRank4<3, 2, 0, 2, 0>> for ElasticMultiplicative<C1, C2>where
C1: Hyperelastic,
C2: Hyperelastic,
impl<C1, C2> HyperelasticIV<TensorRank2<3, 2, 0>, TensorRank4<3, 2, 0, 1, 0>, TensorRank4<3, 1, 0, 2, 0>, TensorRank4<3, 2, 0, 2, 0>> for ElasticMultiplicative<C1, C2>where
C1: Hyperelastic,
C2: Hyperelastic,
Source§fn helmholtz_free_energy_density(
&self,
deformation_gradient: &DeformationGradient,
deformation_gradient_2: &DeformationGradient2,
) -> Result<Scalar, ConstitutiveError>
fn helmholtz_free_energy_density( &self, deformation_gradient: &DeformationGradient, deformation_gradient_2: &DeformationGradient2, ) -> Result<Scalar, ConstitutiveError>
Calculates and returns the Helmholtz free energy density.
a(\mathbf{F}) = a_1(\mathbf{F}_1) + a_2(\mathbf{F}_2)Source§impl<C1, C2> Solid for ElasticMultiplicative<C1, C2>
impl<C1, C2> Solid for ElasticMultiplicative<C1, C2>
Source§fn bulk_modulus(&self) -> Scalar
fn bulk_modulus(&self) -> Scalar
Returns the bulk modulus.
Source§fn shear_modulus(&self) -> Scalar
fn shear_modulus(&self) -> Scalar
Returns the shear modulus.
Source§fn jacobian<const I: usize, const J: usize>(
&self,
deformation_gradient: &DeformationGradientGeneral<I, J>,
) -> Result<Scalar, ConstitutiveError>
fn jacobian<const I: usize, const J: usize>( &self, deformation_gradient: &DeformationGradientGeneral<I, J>, ) -> Result<Scalar, ConstitutiveError>
Calculates and returns the Jacobian.
Auto Trait Implementations§
impl<C1, C2> Freeze for ElasticMultiplicative<C1, C2>
impl<C1, C2> RefUnwindSafe for ElasticMultiplicative<C1, C2>where
C1: RefUnwindSafe,
C2: RefUnwindSafe,
impl<C1, C2> Send for ElasticMultiplicative<C1, C2>
impl<C1, C2> Sync for ElasticMultiplicative<C1, C2>
impl<C1, C2> Unpin for ElasticMultiplicative<C1, C2>
impl<C1, C2> UnwindSafe for ElasticMultiplicative<C1, C2>where
C1: UnwindSafe,
C2: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T, V, T1, T2, T3> FirstOrderMinimize<V, T1, T2, T3> for T
impl<T, V, T1, T2, T3> FirstOrderMinimize<V, T1, T2, T3> for T
Source§type Variables = TensorTuple<TensorRank2<3, 1, 0>, V>
type Variables = TensorTuple<TensorRank2<3, 1, 0>, V>
Type representing all variables.
Source§fn minimize(
&self,
applied_load: AppliedLoad,
solver: impl FirstOrderOptimization<f64, <T as FirstOrderMinimize<V, T1, T2, T3>>::Variables>,
) -> Result<(TensorRank2<3, 1, 0>, V), ConstitutiveError>
fn minimize( &self, applied_load: AppliedLoad, solver: impl FirstOrderOptimization<f64, <T as FirstOrderMinimize<V, T1, T2, T3>>::Variables>, ) -> Result<(TensorRank2<3, 1, 0>, V), ConstitutiveError>
Solve for the unknown components of the deformation gradient under an applied load. Read more
Source§impl<T, V, T1, T2, T3> FirstOrderRoot<V, T1, T2, T3> for T
impl<T, V, T1, T2, T3> FirstOrderRoot<V, T1, T2, T3> for T
Source§type Variables = TensorTuple<TensorRank2<3, 1, 0>, V>
type Variables = TensorTuple<TensorRank2<3, 1, 0>, V>
Type representing all variables.
Source§fn root(
&self,
applied_load: AppliedLoad,
solver: impl FirstOrderRootFinding<<T as FirstOrderRoot<V, T1, T2, T3>>::Variables, TensorTuple<TensorRank4<3, 1, 0, 1, 0>, TensorTuple<T1, TensorTuple<T2, T3>>>, <T as FirstOrderRoot<V, T1, T2, T3>>::Variables>,
) -> Result<(TensorRank2<3, 1, 0>, V), ConstitutiveError>
fn root( &self, applied_load: AppliedLoad, solver: impl FirstOrderRootFinding<<T as FirstOrderRoot<V, T1, T2, T3>>::Variables, TensorTuple<TensorRank4<3, 1, 0, 1, 0>, TensorTuple<T1, TensorTuple<T2, T3>>>, <T as FirstOrderRoot<V, T1, T2, T3>>::Variables>, ) -> Result<(TensorRank2<3, 1, 0>, V), ConstitutiveError>
Solve for the unknown components of the deformation gradient under an applied load. Read more
Source§impl<T, V, T1, T2, T3> SecondOrderMinimize<V, T1, T2, T3> for T
impl<T, V, T1, T2, T3> SecondOrderMinimize<V, T1, T2, T3> for T
Source§type Variables = TensorTuple<TensorRank2<3, 1, 0>, V>
type Variables = TensorTuple<TensorRank2<3, 1, 0>, V>
Type representing all variables.
Source§fn minimize(
&self,
applied_load: AppliedLoad,
solver: impl SecondOrderOptimization<f64, <T as SecondOrderMinimize<V, T1, T2, T3>>::Variables, TensorTuple<TensorRank4<3, 1, 0, 1, 0>, TensorTuple<T1, TensorTuple<T2, T3>>>, <T as SecondOrderMinimize<V, T1, T2, T3>>::Variables>,
) -> Result<(TensorRank2<3, 1, 0>, V), ConstitutiveError>
fn minimize( &self, applied_load: AppliedLoad, solver: impl SecondOrderOptimization<f64, <T as SecondOrderMinimize<V, T1, T2, T3>>::Variables, TensorTuple<TensorRank4<3, 1, 0, 1, 0>, TensorTuple<T1, TensorTuple<T2, T3>>>, <T as SecondOrderMinimize<V, T1, T2, T3>>::Variables>, ) -> Result<(TensorRank2<3, 1, 0>, V), ConstitutiveError>
Solve for the unknown components of the deformation gradient under an applied load. Read more
Source§impl<T, V, T1, T2, T3> ZerothOrderRoot<V, T1, T2, T3> for T
impl<T, V, T1, T2, T3> ZerothOrderRoot<V, T1, T2, T3> for T
Source§type Variables = TensorTuple<TensorRank2<3, 1, 0>, V>
type Variables = TensorTuple<TensorRank2<3, 1, 0>, V>
Type representing all variables.
Source§fn root(
&self,
applied_load: AppliedLoad,
solver: impl ZerothOrderRootFinding<<T as ZerothOrderRoot<V, T1, T2, T3>>::Variables>,
) -> Result<(TensorRank2<3, 1, 0>, V), ConstitutiveError>
fn root( &self, applied_load: AppliedLoad, solver: impl ZerothOrderRootFinding<<T as ZerothOrderRoot<V, T1, T2, T3>>::Variables>, ) -> Result<(TensorRank2<3, 1, 0>, V), ConstitutiveError>
Solve for the unknown components of the deformation gradient under an applied load. Read more