ElasticMultiplicative

Struct ElasticMultiplicative 

Source
pub struct ElasticMultiplicative<C1, C2>
where C1: Elastic, C2: Elastic,
{ /* private fields */ }
Expand description

A hybrid elastic constitutive model based on the multiplicative decomposition.

Trait Implementations§

Source§

impl<C1, C2> Clone for ElasticMultiplicative<C1, C2>
where C1: Elastic + Clone, C2: Elastic + Clone,

Source§

fn clone(&self) -> ElasticMultiplicative<C1, C2>

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl<C1, C2> Debug for ElasticMultiplicative<C1, C2>
where C1: Elastic + Debug, C2: Elastic + Debug,

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl<C1, C2> Deref for ElasticMultiplicative<C1, C2>
where C1: Elastic, C2: Elastic,

Source§

type Target = Multiplicative<C1, C2>

The resulting type after dereferencing.
Source§

fn deref(&self) -> &Self::Target

Dereferences the value.
Source§

impl<C1, C2> ElasticIV<TensorRank2<3, 2, 0>, TensorRank4<3, 2, 0, 1, 0>, TensorRank4<3, 1, 0, 2, 0>, TensorRank4<3, 2, 0, 2, 0>> for ElasticMultiplicative<C1, C2>
where C1: Elastic, C2: Elastic,

Source§

fn cauchy_stress( &self, deformation_gradient: &DeformationGradient, deformation_gradient_2: &DeformationGradient2, ) -> Result<CauchyStress, ConstitutiveError>

Calculates and returns the Cauchy stress.

\boldsymbol{\sigma} = \frac{1}{J_2}\,\boldsymbol{\sigma}_1
Source§

fn cauchy_tangent_stiffness( &self, deformation_gradient: &DeformationGradient, deformation_gradient_2: &DeformationGradient2, ) -> Result<CauchyTangentStiffness, ConstitutiveError>

Calculates and returns the tangent stiffness associated with the Cauchy stress.

\boldsymbol{\mathcal{T}} = \frac{1}{J_2}\,\boldsymbol{\mathcal{T}}_1\cdot\mathbf{F}_2^{-T}
Source§

fn first_piola_kirchhoff_stress( &self, deformation_gradient: &DeformationGradient, deformation_gradient_2: &DeformationGradient2, ) -> Result<FirstPiolaKirchhoffStress, ConstitutiveError>

Calculates and returns the first Piola-Kirchhoff stress.

\mathbf{P} = \mathbf{P}_1\cdot\mathbf{F}_2^{-T}
Source§

fn second_piola_kirchhoff_stress( &self, deformation_gradient: &DeformationGradient, deformation_gradient_2: &DeformationGradient2, ) -> Result<SecondPiolaKirchhoffStress, ConstitutiveError>

Calculates and returns the second Piola-Kirchhoff stress.

\mathbf{S} = \mathbf{F}_2^{-1}\cdot\mathbf{S}_1\cdot\mathbf{F}_2^{-T}
Source§

fn internal_variables_residual( &self, deformation_gradient: &DeformationGradient, deformation_gradient_2: &DeformationGradient2, ) -> Result<DeformationGradient2, ConstitutiveError>

Calculates and returns the residual associated with the second deformation gradient.

\mathbf{R} = \mathbf{P}_2 - \mathbf{M}_1\cdot\mathbf{F}_2^{-T}
Source§

fn internal_variables_tangents( &self, deformation_gradient: &DeformationGradient, deformation_gradient_2: &DeformationGradient2, ) -> Result<(TensorRank4<3, 2, 0, 1, 0>, TensorRank4<3, 1, 0, 2, 0>, FirstPiolaKirchhoffTangentStiffness2), ConstitutiveError>

Calculates and returns the tangents associated with the internal variables.

\frac{\partial P_{iJ}}{\partial F_{KL}^2} = -P_{iL}F_{KJ}^{2-T} - \mathcal{C}_{iJmL}F_{mK}^1
\frac{\partial R_{IJ}}{\partial F_{kL}} = -F_{IL}^{2-T}P_{kJ} - F_{mI}^1\mathcal{C}_{mJkL}
\frac{\partial R_{IJ}}{\partial F_{KL}^2} = \mathcal{C}_{IJKL}^2 + F_{IM}^1P_{ML}{F_{KJ}^{2-T}} - \frac{\partial R_{IJ}}{\partial F_{mL}}\,F_{mK}^1
Source§

fn internal_variables_initial(&self) -> DeformationGradient2

Returns the initial value for the internal variables.
Source§

fn internal_variables_constraints(&self) -> (&[usize], usize)

Returns the constraint indices for the internal variables.
Source§

fn first_piola_kirchhoff_tangent_stiffness( &self, deformation_gradient: &DeformationGradient, internal_variables: &V, ) -> Result<FirstPiolaKirchhoffTangentStiffness, ConstitutiveError>

Calculates and returns the tangent stiffness associated with the first Piola-Kirchhoff stress. Read more
Source§

fn second_piola_kirchhoff_tangent_stiffness( &self, deformation_gradient: &DeformationGradient, internal_variables: &V, ) -> Result<SecondPiolaKirchhoffTangentStiffness, ConstitutiveError>

Calculates and returns the tangent stiffness associated with the second Piola-Kirchhoff stress. Read more
Source§

impl<C1, C2> From<(C1, C2)> for ElasticMultiplicative<C1, C2>
where C1: Elastic, C2: Elastic,

Source§

fn from((constitutive_model_1, constitutive_model_2): (C1, C2)) -> Self

Converts to this type from the input type.
Source§

impl<C1, C2> HyperelasticIV<TensorRank2<3, 2, 0>, TensorRank4<3, 2, 0, 1, 0>, TensorRank4<3, 1, 0, 2, 0>, TensorRank4<3, 2, 0, 2, 0>> for ElasticMultiplicative<C1, C2>
where C1: Hyperelastic, C2: Hyperelastic,

Source§

fn helmholtz_free_energy_density( &self, deformation_gradient: &DeformationGradient, deformation_gradient_2: &DeformationGradient2, ) -> Result<Scalar, ConstitutiveError>

Calculates and returns the Helmholtz free energy density.

a(\mathbf{F}) = a_1(\mathbf{F}_1) + a_2(\mathbf{F}_2)
Source§

impl<C1, C2> Solid for ElasticMultiplicative<C1, C2>
where C1: Elastic, C2: Elastic,

Source§

fn bulk_modulus(&self) -> Scalar

Returns the bulk modulus.
Source§

fn shear_modulus(&self) -> Scalar

Returns the shear modulus.
Source§

fn jacobian<const I: usize, const J: usize>( &self, deformation_gradient: &DeformationGradientGeneral<I, J>, ) -> Result<Scalar, ConstitutiveError>

Calculates and returns the Jacobian.

Auto Trait Implementations§

§

impl<C1, C2> Freeze for ElasticMultiplicative<C1, C2>
where C1: Freeze, C2: Freeze,

§

impl<C1, C2> RefUnwindSafe for ElasticMultiplicative<C1, C2>

§

impl<C1, C2> Send for ElasticMultiplicative<C1, C2>
where C1: Send, C2: Send,

§

impl<C1, C2> Sync for ElasticMultiplicative<C1, C2>
where C1: Sync, C2: Sync,

§

impl<C1, C2> Unpin for ElasticMultiplicative<C1, C2>
where C1: Unpin, C2: Unpin,

§

impl<C1, C2> UnwindSafe for ElasticMultiplicative<C1, C2>
where C1: UnwindSafe, C2: UnwindSafe,

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T, V, T1, T2, T3> FirstOrderMinimize<V, T1, T2, T3> for T
where T: HyperelasticIV<V, T1, T2, T3> + ElasticIV<V, T1, T2, T3>, T1: Tensor, T2: Tensor, T3: Tensor, V: Tensor,

Source§

type Variables = TensorTuple<TensorRank2<3, 1, 0>, V>

Type representing all variables.
Source§

fn minimize( &self, applied_load: AppliedLoad, solver: impl FirstOrderOptimization<f64, <T as FirstOrderMinimize<V, T1, T2, T3>>::Variables>, ) -> Result<(TensorRank2<3, 1, 0>, V), ConstitutiveError>

Solve for the unknown components of the deformation gradient under an applied load. Read more
Source§

impl<T, V, T1, T2, T3> FirstOrderRoot<V, T1, T2, T3> for T
where T1: Tensor, T2: Tensor, T3: Tensor, T: ElasticIV<V, T1, T2, T3>, V: Tensor,

Source§

type Variables = TensorTuple<TensorRank2<3, 1, 0>, V>

Type representing all variables.
Source§

fn root( &self, applied_load: AppliedLoad, solver: impl FirstOrderRootFinding<<T as FirstOrderRoot<V, T1, T2, T3>>::Variables, TensorTuple<TensorRank4<3, 1, 0, 1, 0>, TensorTuple<T1, TensorTuple<T2, T3>>>, <T as FirstOrderRoot<V, T1, T2, T3>>::Variables>, ) -> Result<(TensorRank2<3, 1, 0>, V), ConstitutiveError>

Solve for the unknown components of the deformation gradient under an applied load. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<P, T> Receiver for P
where P: Deref<Target = T> + ?Sized, T: ?Sized,

Source§

type Target = T

🔬This is a nightly-only experimental API. (arbitrary_self_types)
The target type on which the method may be called.
Source§

impl<T, V, T1, T2, T3> SecondOrderMinimize<V, T1, T2, T3> for T
where T1: Tensor, T2: Tensor, T3: Tensor, T: HyperelasticIV<V, T1, T2, T3>, V: Tensor,

Source§

type Variables = TensorTuple<TensorRank2<3, 1, 0>, V>

Type representing all variables.
Source§

fn minimize( &self, applied_load: AppliedLoad, solver: impl SecondOrderOptimization<f64, <T as SecondOrderMinimize<V, T1, T2, T3>>::Variables, TensorTuple<TensorRank4<3, 1, 0, 1, 0>, TensorTuple<T1, TensorTuple<T2, T3>>>, <T as SecondOrderMinimize<V, T1, T2, T3>>::Variables>, ) -> Result<(TensorRank2<3, 1, 0>, V), ConstitutiveError>

Solve for the unknown components of the deformation gradient under an applied load. Read more
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<T, V, T1, T2, T3> ZerothOrderRoot<V, T1, T2, T3> for T
where T: ElasticIV<V, T1, T2, T3>, V: Tensor,

Source§

type Variables = TensorTuple<TensorRank2<3, 1, 0>, V>

Type representing all variables.
Source§

fn root( &self, applied_load: AppliedLoad, solver: impl ZerothOrderRootFinding<<T as ZerothOrderRoot<V, T1, T2, T3>>::Variables>, ) -> Result<(TensorRank2<3, 1, 0>, V), ConstitutiveError>

Solve for the unknown components of the deformation gradient under an applied load. Read more
Source§

impl<C> Constitutive for C
where C: Solid,