conspire::constitutive::solid::elastic

Trait Elastic

Source
pub trait Elastic<'a>
where Self: Solid<'a>,
{ // Provided methods fn cauchy_stress( &self, deformation_gradient: &DeformationGradient, ) -> Result<CauchyStress, ConstitutiveError> { ... } fn cauchy_tangent_stiffness( &self, deformation_gradient: &DeformationGradient, ) -> Result<CauchyTangentStiffness, ConstitutiveError> { ... } fn first_piola_kirchhoff_stress( &self, deformation_gradient: &DeformationGradient, ) -> Result<FirstPiolaKirchhoffStress, ConstitutiveError> { ... } fn first_piola_kirchhoff_tangent_stiffness( &self, deformation_gradient: &DeformationGradient, ) -> Result<FirstPiolaKirchhoffTangentStiffness, ConstitutiveError> { ... } fn second_piola_kirchhoff_stress( &self, deformation_gradient: &DeformationGradient, ) -> Result<SecondPiolaKirchhoffStress, ConstitutiveError> { ... } fn second_piola_kirchhoff_tangent_stiffness( &self, deformation_gradient: &DeformationGradient, ) -> Result<SecondPiolaKirchhoffTangentStiffness, ConstitutiveError> { ... } fn solve( &self, applied_load: AppliedLoad, ) -> Result<(DeformationGradient, CauchyStress), ConstitutiveError> { ... } }
Expand description

Required methods for elastic constitutive models.

Provided Methods§

Source

fn cauchy_stress( &self, deformation_gradient: &DeformationGradient, ) -> Result<CauchyStress, ConstitutiveError>

Calculates and returns the Cauchy stress.

\boldsymbol{\sigma} = J^{-1}\mathbf{P}\cdot\mathbf{F}^T
Source

fn cauchy_tangent_stiffness( &self, deformation_gradient: &DeformationGradient, ) -> Result<CauchyTangentStiffness, ConstitutiveError>

Calculates and returns the tangent stiffness associated with the Cauchy stress.

\mathcal{T}_{ijkL} = \frac{\partial\sigma_{ij}}{\partial F_{kL}} = J^{-1} \mathcal{G}_{MNkL} F_{iM} F_{jN} - \sigma_{ij} F_{kL}^{-T} + \left(\delta_{jk}\sigma_{is} + \delta_{ik}\sigma_{js}\right)F_{sL}^{-T}
Source

fn first_piola_kirchhoff_stress( &self, deformation_gradient: &DeformationGradient, ) -> Result<FirstPiolaKirchhoffStress, ConstitutiveError>

Calculates and returns the first Piola-Kirchhoff stress.

\mathbf{P} = J\boldsymbol{\sigma}\cdot\mathbf{F}^{-T}
Source

fn first_piola_kirchhoff_tangent_stiffness( &self, deformation_gradient: &DeformationGradient, ) -> Result<FirstPiolaKirchhoffTangentStiffness, ConstitutiveError>

Calculates and returns the tangent stiffness associated with the first Piola-Kirchhoff stress.

\mathcal{C}_{iJkL} = \frac{\partial P_{iJ}}{\partial F_{kL}} = J \mathcal{T}_{iskL} F_{sJ}^{-T} + P_{iJ} F_{kL}^{-T} - P_{iL} F_{kJ}^{-T}
Source

fn second_piola_kirchhoff_stress( &self, deformation_gradient: &DeformationGradient, ) -> Result<SecondPiolaKirchhoffStress, ConstitutiveError>

Calculates and returns the second Piola-Kirchhoff stress.

\mathbf{S} = \mathbf{F}^{-1}\cdot\mathbf{P}
Source

fn second_piola_kirchhoff_tangent_stiffness( &self, deformation_gradient: &DeformationGradient, ) -> Result<SecondPiolaKirchhoffTangentStiffness, ConstitutiveError>

Calculates and returns the tangent stiffness associated with the second Piola-Kirchhoff stress.

\mathcal{G}_{IJkL} = \frac{\partial S_{IJ}}{\partial F_{kL}} = \mathcal{C}_{mJkL}F_{mI}^{-T} - S_{LJ}F_{kI}^{-T} = J \mathcal{T}_{mnkL} F_{mI}^{-T} F_{nJ}^{-T} + S_{IJ} F_{kL}^{-T} - S_{IL} F_{kJ}^{-T} -S_{LJ} F_{kI}^{-T}
Source

fn solve( &self, applied_load: AppliedLoad, ) -> Result<(DeformationGradient, CauchyStress), ConstitutiveError>

Solve for the unknown components of the Cauchy stress and deformation gradient under an applied load.

Dyn Compatibility§

This trait is not dyn compatible.

In older versions of Rust, dyn compatibility was called "object safety", so this trait is not object safe.

Implementors§

Source§

impl<'a> Elastic<'a> for ArrudaBoyce<'a>

Source§

impl<'a> Elastic<'a> for Fung<'a>

Source§

impl<'a> Elastic<'a> for Gent<'a>

Source§

impl<'a> Elastic<'a> for MooneyRivlin<'a>

Source§

impl<'a> Elastic<'a> for NeoHookean<'a>

Source§

impl<'a> Elastic<'a> for SaintVenantKirchhoff<'a>

Source§

impl<'a> Elastic<'a> for Yeoh<'a>

Source§

impl<'a> Elastic<'a> for AlmansiHamel<'a>

Source§

impl<'a, C1: Elastic<'a>, C2: Elastic<'a>> Elastic<'a> for Additive<C1, C2>

Source§

impl<'a, C1: Elastic<'a>, C2: Elastic<'a>> Elastic<'a> for Multiplicative<C1, C2>