conspire::math

Trait Tensor

Source
pub trait Tensor
where for<'a> Self: Sized + Debug + Display + Add<Self, Output = Self> + Add<&'a Self, Output = Self> + AddAssign + AddAssign<&'a Self> + Clone + Div<TensorRank0, Output = Self> + DivAssign<TensorRank0> + Mul<TensorRank0, Output = Self> + Sub<Self, Output = Self> + Sub<&'a Self, Output = Self> + SubAssign + SubAssign<&'a Self>, Self::Item: Tensor,
{ type Item; // Required methods fn iter(&self) -> impl Iterator<Item = &Self::Item>; fn iter_mut(&mut self) -> impl Iterator<Item = &mut Self::Item>; // Provided methods fn full_contraction(&self, tensor: &Self) -> TensorRank0 { ... } fn get_at(&self, _indices: &[usize]) -> &TensorRank0 { ... } fn get_at_mut(&mut self, _indices: &[usize]) -> &mut TensorRank0 { ... } fn is_zero(&self) -> bool { ... } fn norm(&self) -> TensorRank0 { ... } fn norm_squared(&self) -> TensorRank0 { ... } fn normalize(&mut self) { ... } fn normalized(self) -> Self { ... } }
Expand description

Common methods for tensors.

Required Associated Types§

Source

type Item

The type of item encountered when iterating over the tensor.

Required Methods§

Source

fn iter(&self) -> impl Iterator<Item = &Self::Item>

Returns an iterator.

The iterator yields all items from start to end. Read more

Source

fn iter_mut(&mut self) -> impl Iterator<Item = &mut Self::Item>

Returns an iterator that allows modifying each value.

The iterator yields all items from start to end. Read more

Provided Methods§

Source

fn full_contraction(&self, tensor: &Self) -> TensorRank0

Returns the full contraction with another tensor.

Source

fn get_at(&self, _indices: &[usize]) -> &TensorRank0

Returns a reference to the entry at the specified indices.

Source

fn get_at_mut(&mut self, _indices: &[usize]) -> &mut TensorRank0

Returns a mutable reference to the entry at the specified indices.

Source

fn is_zero(&self) -> bool

Checks whether the tensor is the zero tensor.

Source

fn norm(&self) -> TensorRank0

Returns the tensor norm.

Source

fn norm_squared(&self) -> TensorRank0

Returns the tensor norm squared.

Source

fn normalize(&mut self)

Normalizes the tensor.

Source

fn normalized(self) -> Self

Returns the tensor normalized.

Dyn Compatibility§

This trait is not dyn compatible.

In older versions of Rust, dyn compatibility was called "object safety", so this trait is not object safe.

Implementors§

Source§

impl Tensor for SquareMatrix

Source§

impl Tensor for Vector

Source§

impl Tensor for TensorRank0

Source§

impl<const D: usize, const I: usize> Tensor for TensorRank1<D, I>

Source§

impl<const D: usize, const I: usize> Tensor for TensorRank1Vec<D, I>

Source§

impl<const D: usize, const I: usize, const J: usize> Tensor for TensorRank2<D, I, J>

Source§

impl<const D: usize, const I: usize, const J: usize> Tensor for TensorRank2Vec2D<D, I, J>

Source§

impl<const D: usize, const I: usize, const J: usize> Tensor for TensorRank2Vec<D, I, J>

Source§

type Item = TensorRank2<D, I, J>

Source§

impl<const D: usize, const I: usize, const J: usize, const K: usize> Tensor for TensorRank3<D, I, J, K>

Source§

type Item = TensorRank2<D, J, K>

Source§

impl<const D: usize, const I: usize, const J: usize, const K: usize, const L: usize> Tensor for TensorRank4<D, I, J, K, L>

Source§

type Item = TensorRank3<D, J, K, L>

Source§

impl<const D: usize, const I: usize, const J: usize, const K: usize, const L: usize, const W: usize> Tensor for TensorRank4List<D, I, J, K, L, W>

Source§

type Item = TensorRank4<D, I, J, K, L>

Source§

impl<const D: usize, const I: usize, const J: usize, const K: usize, const W: usize> Tensor for TensorRank3List<D, I, J, K, W>

Source§

type Item = TensorRank3<D, I, J, K>

Source§

impl<const D: usize, const I: usize, const J: usize, const K: usize, const W: usize, const X: usize> Tensor for TensorRank3List2D<D, I, J, K, W, X>

Source§

type Item = TensorRank3List<D, I, J, K, W>

Source§

impl<const D: usize, const I: usize, const J: usize, const K: usize, const W: usize, const X: usize, const Y: usize> Tensor for TensorRank3List3D<D, I, J, K, W, X, Y>

Source§

type Item = TensorRank3List2D<D, I, J, K, W, X>

Source§

impl<const D: usize, const I: usize, const J: usize, const W: usize> Tensor for TensorRank2List<D, I, J, W>

Source§

type Item = TensorRank2<D, I, J>

Source§

impl<const D: usize, const I: usize, const J: usize, const W: usize, const X: usize> Tensor for TensorRank2List2D<D, I, J, W, X>

Source§

type Item = TensorRank2List<D, I, J, W>

Source§

impl<const D: usize, const I: usize, const W: usize> Tensor for TensorRank1List<D, I, W>

Source§

impl<const D: usize, const I: usize, const W: usize, const X: usize> Tensor for TensorRank1List2D<D, I, W, X>

Source§

impl<const W: usize> Tensor for TensorRank0List<W>