conspire::constitutive::solid::elastic_hyperviscous

Struct AlmansiHamel

Source
pub struct AlmansiHamel<'a> { /* private fields */ }
Expand description

The Almansi-Hamel viscoelastic constitutive model.

Parameters

  • The bulk modulus $\kappa$.
  • The shear modulus $\mu$.
  • The bulk viscosity $\zeta$.
  • The shear viscosity $\eta$.

External variables

  • The deformation gradient $\mathbf{F}$.
  • The deformation gradient rate $\dot{\mathbf{F}}$.

Internal variables

  • None.

Notes

  • The Almansi-Hamel strain measure is given by $\mathbf{e}=\tfrac{1}{2}(\mathbf{1}-\mathbf{B}^{-1})$.

Trait Implementations§

Source§

impl<'a> Constitutive<'a> for AlmansiHamel<'a>

Source§

fn new(parameters: Parameters<'a>) -> Self

Constructs and returns a new constitutive model.
Source§

fn jacobian( &self, deformation_gradient: &DeformationGradient, ) -> Result<Scalar, ConstitutiveError>

Calculates and returns the Jacobian.
Source§

impl<'a> Debug for AlmansiHamel<'a>

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl<'a> ElasticHyperviscous<'a> for AlmansiHamel<'a>

Source§

fn viscous_dissipation( &self, deformation_gradient: &DeformationGradient, deformation_gradient_rate: &DeformationGradientRate, ) -> Result<Scalar, ConstitutiveError>

Calculates and returns the viscous dissipation.

\phi(\mathbf{F},\dot{\mathbf{F}}) = \eta\,\mathrm{tr}(\mathbf{D}^2) + \frac{1}{2}\left(\zeta - \frac{2}{3}\,\eta\right)\mathrm{tr}(\mathbf{D})^2
Source§

fn dissipation_potential( &self, deformation_gradient: &DeformationGradient, deformation_gradient_rate: &DeformationGradientRate, ) -> Result<Scalar, ConstitutiveError>

Calculates and returns the dissipation potential. Read more
Source§

fn solve_uniaxial<const W: usize>( &self, deformation_gradient_rate_11: impl Fn(Scalar) -> Scalar, evaluation_times: [Scalar; W], ) -> Result<(DeformationGradients<W>, CauchyStresses<W>), ConstitutiveError>

Solve for the unknown components of the Cauchy stress and deformation gradient under uniaxial stress.
Source§

impl<'a> Solid<'a> for AlmansiHamel<'a>

Source§

fn bulk_modulus(&self) -> &Scalar

Returns the bulk modulus.
Source§

fn shear_modulus(&self) -> &Scalar

Returns the shear modulus.
Source§

impl<'a> Viscoelastic<'a> for AlmansiHamel<'a>

Source§

fn cauchy_stress( &self, deformation_gradient: &DeformationGradient, deformation_gradient_rate: &DeformationGradientRate, ) -> Result<CauchyStress, ConstitutiveError>

Calculates and returns the Cauchy stress.

\mathbf{}(\mathbf{F},\dot\mathbf{F}) = 2\mu\mathbf{e}' + \kappa\,\mathrm{tr}(\mathbf{e})\mathbf{1} + 2\eta\mathbf{D}' + \zeta\,\mathrm{tr}(\mathbf{D})\mathbf{1}
Source§

fn cauchy_rate_tangent_stiffness( &self, deformation_gradient: &DeformationGradient, _: &DeformationGradientRate, ) -> Result<CauchyRateTangentStiffness, ConstitutiveError>

Calculates and returns the rate tangent stiffness associated with the Cauchy stress.

\mathcal{V}_{IJkL}(\mathbf{F}) = \eta\,\delta_{ik}F_{jL}^{-T} + \eta\,\delta_{jk}F_{iL}^{-T} + \left(\zeta - \frac{2}{3}\,\eta\right)\delta_{ij}F_{kL}^{-T}
Source§

fn first_piola_kirchhoff_stress( &self, deformation_gradient: &DeformationGradient, deformation_gradient_rate: &DeformationGradientRate, ) -> Result<FirstPiolaKirchhoffStress, ConstitutiveError>

Calculates and returns the first Piola-Kirchhoff stress. Read more
Source§

fn first_piola_kirchhoff_rate_tangent_stiffness( &self, deformation_gradient: &DeformationGradient, deformation_gradient_rate: &DeformationGradientRate, ) -> Result<FirstPiolaKirchhoffRateTangentStiffness, ConstitutiveError>

Calculates and returns the rate tangent stiffness associated with the first Piola-Kirchhoff stress. Read more
Source§

fn second_piola_kirchhoff_stress( &self, deformation_gradient: &DeformationGradient, deformation_gradient_rate: &DeformationGradientRate, ) -> Result<SecondPiolaKirchhoffStress, ConstitutiveError>

Calculates and returns the second Piola-Kirchhoff stress. Read more
Source§

fn second_piola_kirchhoff_rate_tangent_stiffness( &self, deformation_gradient: &DeformationGradient, deformation_gradient_rate: &DeformationGradientRate, ) -> Result<SecondPiolaKirchhoffRateTangentStiffness, ConstitutiveError>

Calculates and returns the rate tangent stiffness associated with the second Piola-Kirchhoff stress. Read more
Source§

impl<'a> Viscous<'a> for AlmansiHamel<'a>

Source§

fn bulk_viscosity(&self) -> &Scalar

Returns the bulk viscosity.
Source§

fn shear_viscosity(&self) -> &Scalar

Returns the shear viscosity.

Auto Trait Implementations§

§

impl<'a> Freeze for AlmansiHamel<'a>

§

impl<'a> RefUnwindSafe for AlmansiHamel<'a>

§

impl<'a> Send for AlmansiHamel<'a>

§

impl<'a> Sync for AlmansiHamel<'a>

§

impl<'a> Unpin for AlmansiHamel<'a>

§

impl<'a> UnwindSafe for AlmansiHamel<'a>

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<A, Y, U> OdeSolver<Y, U> for A
where A: Debug, Y: Tensor, U: TensorVec<Item = Y>,