pub struct Hencky {
    pub bulk_modulus: Scalar,
    pub shear_modulus: Scalar,
}Expand description
The Hencky hyperelastic constitutive model.
Parameters
- The bulk modulus $\kappa$.
- The shear modulus $\mu$.
External variables
- The deformation gradient $\mathbf{F}$.
Internal variables
- None.
Notes
- The Hencky strain measure is given by $\mathbf{h}=\tfrac{1}{2}\ln(\mathbf{B})$.
Fields§
§bulk_modulus: ScalarThe bulk modulus $\kappa$.
shear_modulus: ScalarThe shear modulus $\mu$.
Trait Implementations§
Source§impl Elastic for Hencky
 
impl Elastic for Hencky
Source§fn cauchy_stress(
    &self,
    deformation_gradient: &DeformationGradient,
) -> Result<CauchyStress, ConstitutiveError>
 
fn cauchy_stress( &self, deformation_gradient: &DeformationGradient, ) -> Result<CauchyStress, ConstitutiveError>
\boldsymbol{\sigma}(\mathbf{F}) = \frac{2\mu}{J}\,\mathbf{h}' + \frac{\kappa}{J}\,\mathrm{tr}(\mathbf{h})\mathbf{1}Source§fn cauchy_tangent_stiffness(
    &self,
    deformation_gradient: &DeformationGradient,
) -> Result<CauchyTangentStiffness, ConstitutiveError>
 
fn cauchy_tangent_stiffness( &self, deformation_gradient: &DeformationGradient, ) -> Result<CauchyTangentStiffness, ConstitutiveError>
\mathcal{T}_{ijkL}(\mathbf{F}) = \frac{\mu}{J}\left[\frac{\partial\ln B_{ij}}{\partial F_{kL}} - \frac{2}{3}\,\delta_{ij}F_{kL}^{-T} - 2h_{ij}'F_{kL}^{-T}\right] + \frac{\kappa}{J}\left[1 - \mathrm{tr}(\mathbf{h})\right]\delta_{ij}F_{kL}^{-T}Source§fn first_piola_kirchhoff_stress(
    &self,
    deformation_gradient: &DeformationGradient,
) -> Result<FirstPiolaKirchhoffStress, ConstitutiveError>
 
fn first_piola_kirchhoff_stress( &self, deformation_gradient: &DeformationGradient, ) -> Result<FirstPiolaKirchhoffStress, ConstitutiveError>
Calculates and returns the first Piola-Kirchhoff stress. Read more
Source§fn first_piola_kirchhoff_tangent_stiffness(
    &self,
    deformation_gradient: &DeformationGradient,
) -> Result<FirstPiolaKirchhoffTangentStiffness, ConstitutiveError>
 
fn first_piola_kirchhoff_tangent_stiffness( &self, deformation_gradient: &DeformationGradient, ) -> Result<FirstPiolaKirchhoffTangentStiffness, ConstitutiveError>
Calculates and returns the tangent stiffness associated with the first Piola-Kirchhoff stress. Read more
Source§fn second_piola_kirchhoff_stress(
    &self,
    deformation_gradient: &DeformationGradient,
) -> Result<SecondPiolaKirchhoffStress, ConstitutiveError>
 
fn second_piola_kirchhoff_stress( &self, deformation_gradient: &DeformationGradient, ) -> Result<SecondPiolaKirchhoffStress, ConstitutiveError>
Calculates and returns the second Piola-Kirchhoff stress. Read more
Source§fn second_piola_kirchhoff_tangent_stiffness(
    &self,
    deformation_gradient: &DeformationGradient,
) -> Result<SecondPiolaKirchhoffTangentStiffness, ConstitutiveError>
 
fn second_piola_kirchhoff_tangent_stiffness( &self, deformation_gradient: &DeformationGradient, ) -> Result<SecondPiolaKirchhoffTangentStiffness, ConstitutiveError>
Calculates and returns the tangent stiffness associated with the second Piola-Kirchhoff stress. Read more
Source§impl Hyperelastic for Hencky
 
impl Hyperelastic for Hencky
Source§fn helmholtz_free_energy_density(
    &self,
    deformation_gradient: &DeformationGradient,
) -> Result<Scalar, ConstitutiveError>
 
fn helmholtz_free_energy_density( &self, deformation_gradient: &DeformationGradient, ) -> Result<Scalar, ConstitutiveError>
a(\mathbf{F}) = \mu\,\mathrm{tr}(\mathbf{h}^2) + \frac{1}{2}\left(\kappa - \frac{2}{3}\,\mu\right)\mathrm{tr}(\mathbf{h})^2Auto Trait Implementations§
impl Freeze for Hencky
impl RefUnwindSafe for Hencky
impl Send for Hencky
impl Sync for Hencky
impl Unpin for Hencky
impl UnwindSafe for Hencky
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
    T: ?Sized,
 
impl<T> BorrowMut<T> for Twhere
    T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
 
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<C> Constitutive for Cwhere
    C: Solid,
 
impl<C> Constitutive for Cwhere
    C: Solid,
Source§fn jacobian(
    &self,
    deformation_gradient: &DeformationGradient,
) -> Result<Scalar, ConstitutiveError>
 
fn jacobian( &self, deformation_gradient: &DeformationGradient, ) -> Result<Scalar, ConstitutiveError>
Calculates and returns the Jacobian.
Source§impl<T> FirstOrderMinimize for Twhere
    T: Hyperelastic,
 
impl<T> FirstOrderMinimize for Twhere
    T: Hyperelastic,
Source§fn minimize(
    &self,
    applied_load: AppliedLoad,
    solver: impl FirstOrderOptimization<f64, TensorRank2<3, 1, 0>>,
) -> Result<TensorRank2<3, 1, 0>, ConstitutiveError>
 
fn minimize( &self, applied_load: AppliedLoad, solver: impl FirstOrderOptimization<f64, TensorRank2<3, 1, 0>>, ) -> Result<TensorRank2<3, 1, 0>, ConstitutiveError>
Solve for the unknown components of the deformation gradient under an applied load. Read more
Source§impl<T> FirstOrderRoot for Twhere
    T: Elastic,
 
impl<T> FirstOrderRoot for Twhere
    T: Elastic,
Source§fn root(
    &self,
    applied_load: AppliedLoad,
    solver: impl FirstOrderRootFinding<TensorRank2<3, 1, 0>, TensorRank4<3, 1, 0, 1, 0>, TensorRank2<3, 1, 0>>,
) -> Result<TensorRank2<3, 1, 0>, ConstitutiveError>
 
fn root( &self, applied_load: AppliedLoad, solver: impl FirstOrderRootFinding<TensorRank2<3, 1, 0>, TensorRank4<3, 1, 0, 1, 0>, TensorRank2<3, 1, 0>>, ) -> Result<TensorRank2<3, 1, 0>, ConstitutiveError>
Solve for the unknown components of the deformation gradient under an applied load. Read more
Source§impl<T> SecondOrderMinimize for Twhere
    T: Hyperelastic,
 
impl<T> SecondOrderMinimize for Twhere
    T: Hyperelastic,
Source§fn minimize(
    &self,
    applied_load: AppliedLoad,
    solver: impl SecondOrderOptimization<f64, TensorRank2<3, 1, 0>, TensorRank4<3, 1, 0, 1, 0>, TensorRank2<3, 1, 0>>,
) -> Result<TensorRank2<3, 1, 0>, ConstitutiveError>
 
fn minimize( &self, applied_load: AppliedLoad, solver: impl SecondOrderOptimization<f64, TensorRank2<3, 1, 0>, TensorRank4<3, 1, 0, 1, 0>, TensorRank2<3, 1, 0>>, ) -> Result<TensorRank2<3, 1, 0>, ConstitutiveError>
Solve for the unknown components of the deformation gradient under an applied load. Read more
Source§impl<T> ZerothOrderRoot for Twhere
    T: Elastic,
 
impl<T> ZerothOrderRoot for Twhere
    T: Elastic,
Source§fn root(
    &self,
    applied_load: AppliedLoad,
    solver: impl ZerothOrderRootFinding<TensorRank2<3, 1, 0>>,
) -> Result<TensorRank2<3, 1, 0>, ConstitutiveError>
 
fn root( &self, applied_load: AppliedLoad, solver: impl ZerothOrderRootFinding<TensorRank2<3, 1, 0>>, ) -> Result<TensorRank2<3, 1, 0>, ConstitutiveError>
Solve for the unknown components of the deformation gradient under an applied load. Read more