pub struct BogackiShampine {
pub abs_tol: TensorRank0,
pub rel_tol: TensorRank0,
pub dt_beta: TensorRank0,
pub dt_expn: TensorRank0,
pub dt_init: TensorRank0,
}
Expand description
Explicit, three-stage, third-order, variable-step, Runge-Kutta method.1
\frac{dy}{dt} = f(t, y)
t_{n+1} = t_n + h
k_1 = f(t_n, y_n)
k_2 = f(t_n + \tfrac{1}{2} h, y_n + \tfrac{1}{2} h k_1)
k_3 = f(t_n + \tfrac{3}{4} h, y_n + \tfrac{3}{4} h k_2)
y_{n+1} = y_n + \frac{h}{9}\left(2k_1 + 3k_2 + 4k_3\right)
k_4 = f(t_{n+1}, y_{n+1})
e_{n+1} = \frac{h}{72}\left(-5k_1 + 6k_2 + 8k_3 - 9k_4\right)
h_{n+1} = \beta h \left(\frac{e_\mathrm{tol}}{e_{n+1}}\right)^{1/p}
P. Bogacki and L.F. Shampine, Appl. Math. Lett. 2, 321 (1989). ↩
Fields§
§abs_tol: TensorRank0
Absolute error tolerance.
rel_tol: TensorRank0
Relative error tolerance.
dt_beta: TensorRank0
Multiplier for adaptive time steps.
dt_expn: TensorRank0
Exponent for adaptive time steps.
dt_init: TensorRank0
Initial relative time step.
Trait Implementations§
Source§impl Debug for BogackiShampine
impl Debug for BogackiShampine
Source§impl Default for BogackiShampine
impl Default for BogackiShampine
Source§impl<Y, U> Explicit<Y, U> for BogackiShampinewhere
Self: InterpolateSolution<Y, U>,
Y: Tensor + TensorArray,
for<'a> &'a Y: Mul<TensorRank0, Output = Y> + Sub<&'a Y, Output = Y>,
U: TensorVec<Item = Y>,
impl<Y, U> Explicit<Y, U> for BogackiShampinewhere
Self: InterpolateSolution<Y, U>,
Y: Tensor + TensorArray,
for<'a> &'a Y: Mul<TensorRank0, Output = Y> + Sub<&'a Y, Output = Y>,
U: TensorVec<Item = Y>,
Source§fn integrate(
&self,
function: impl Fn(&TensorRank0, &Y) -> Y,
time: &[TensorRank0],
initial_condition: Y,
) -> Result<(Vector, U), IntegrationError>
fn integrate( &self, function: impl Fn(&TensorRank0, &Y) -> Y, time: &[TensorRank0], initial_condition: Y, ) -> Result<(Vector, U), IntegrationError>
Solves an initial value problem by explicitly integrating a system of ordinary differential equations. Read more
Source§impl<Y, U> InterpolateSolution<Y, U> for BogackiShampinewhere
Y: Tensor + TensorArray,
for<'a> &'a Y: Mul<TensorRank0, Output = Y> + Sub<&'a Y, Output = Y>,
U: TensorVec<Item = Y>,
impl<Y, U> InterpolateSolution<Y, U> for BogackiShampinewhere
Y: Tensor + TensorArray,
for<'a> &'a Y: Mul<TensorRank0, Output = Y> + Sub<&'a Y, Output = Y>,
U: TensorVec<Item = Y>,
Source§fn interpolate(
&self,
time: &Vector,
tp: &Vector,
yp: &U,
function: impl Fn(&TensorRank0, &Y) -> Y,
) -> U
fn interpolate( &self, time: &Vector, tp: &Vector, yp: &U, function: impl Fn(&TensorRank0, &Y) -> Y, ) -> U
Solution interpolation.
Auto Trait Implementations§
impl Freeze for BogackiShampine
impl RefUnwindSafe for BogackiShampine
impl Send for BogackiShampine
impl Sync for BogackiShampine
impl Unpin for BogackiShampine
impl UnwindSafe for BogackiShampine
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more