conspire::math::integrate

Struct DormandPrince

Source
pub struct DormandPrince {
    pub abs_tol: TensorRank0,
    pub rel_tol: TensorRank0,
    pub dt_beta: TensorRank0,
    pub dt_expn: TensorRank0,
    pub dt_init: TensorRank0,
}
Expand description

Explicit, six-stage, fifth-order, variable-step, Runge-Kutta method.1

\frac{dy}{dt} = f(t, y)
t_{n+1} = t_n + h
k_1 = f(t_n, y_n)
k_2 = f(t_n + \tfrac{1}{5} h, y_n + \tfrac{1}{5} h k_1)
k_3 = f(t_n + \tfrac{3}{10} h, y_n + \tfrac{3}{40} h k_1 + \tfrac{9}{40} h k_2)
k_4 = f(t_n + \tfrac{4}{5} h, y_n + \tfrac{44}{45} h k_1 - \tfrac{56}{15} h k_2 + \tfrac{32}{9} h k_3)
k_5 = f(t_n + \tfrac{8}{9} h, y_n + \tfrac{19372}{6561} h k_1 - \tfrac{25360}{2187} h k_2 + \tfrac{64448}{6561} h k_3 - \tfrac{212}{729} h k_4)
k_6 = f(t_n + h, y_n + \tfrac{9017}{3168} h k_1 - \tfrac{355}{33} h k_2 - \tfrac{46732}{5247} h k_3 + \tfrac{49}{176} h k_4 - \tfrac{5103}{18656} h k_5)
y_{n+1} = y_n + h\left(\frac{35}{384}\,k_1 + \frac{500}{1113}\,k_3 + \frac{125}{192}\,k_4 - \frac{2187}{6784}\,k_5 + \frac{11}{84}\,k_6\right)
k_7 = f(t_{n+1}, y_{n+1})
e_{n+1} = \frac{h}{5}\left(\frac{71}{11520}\,k_1 - \frac{71}{3339}\,k_3 + \frac{71}{384}\,k_4 - \frac{17253}{67840}\,k_5 + \frac{22}{105}\,k_6 - \frac{1}{8}\,k_7\right)
h_{n+1} = \beta h \left(\frac{e_\mathrm{tol}}{e_{n+1}}\right)^{1/p}

  1. J.R. Dormand and P.J. Prince, J. Comput. Appl. Math. 6, 19 (1980)

Fields§

§abs_tol: TensorRank0

Absolute error tolerance.

§rel_tol: TensorRank0

Relative error tolerance.

§dt_beta: TensorRank0

Multiplier for adaptive time steps.

§dt_expn: TensorRank0

Exponent for adaptive time steps.

§dt_init: TensorRank0

Initial relative time step.

Trait Implementations§

Source§

impl Debug for DormandPrince

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl Default for DormandPrince

Source§

fn default() -> Self

Returns the “default value” for a type. Read more
Source§

impl<Y, U> Explicit<Y, U> for DormandPrince
where Self: InterpolateSolution<Y, U>, Y: Tensor + TensorArray, for<'a> &'a Y: Mul<TensorRank0, Output = Y> + Sub<&'a Y, Output = Y>, U: TensorVec<Item = Y>,

Source§

fn integrate( &self, function: impl Fn(&TensorRank0, &Y) -> Y, time: &[TensorRank0], initial_condition: Y, ) -> Result<(Vector, U), IntegrationError>

Solves an initial value problem by explicitly integrating a system of ordinary differential equations. Read more
Source§

impl<Y, U> InterpolateSolution<Y, U> for DormandPrince
where Y: Tensor + TensorArray, for<'a> &'a Y: Mul<TensorRank0, Output = Y> + Sub<&'a Y, Output = Y>, U: TensorVec<Item = Y>,

Source§

fn interpolate( &self, time: &Vector, tp: &Vector, yp: &U, function: impl Fn(&TensorRank0, &Y) -> Y, ) -> U

Solution interpolation.

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<A, Y, U> OdeSolver<Y, U> for A
where A: Debug, Y: Tensor, U: TensorVec<Item = Y>,