conspire::constitutive::solid::hyperelastic

Struct ArrudaBoyce

Source
pub struct ArrudaBoyce<'a> { /* private fields */ }
Expand description

The Arruda-Boyce hyperelastic constitutive model.1

Parameters

  • The bulk modulus $\kappa$.
  • The shear modulus $\mu$.
  • The number of links $N_b$.

External variables

  • The deformation gradient $\mathbf{F}$.

Internal variables

  • None.

Notes

  • The nondimensional end-to-end length per link of the chains is $\gamma=\sqrt{\mathrm{tr}(\mathbf{B}^*)/3N_b}$.
  • The nondimensional force is given by the inverse Langevin function as $\eta=\mathcal{L}^{-1}(\gamma)$.
  • The initial values are given by $\gamma_0=\sqrt{1/3N_b}$ and $\eta_0=\mathcal{L}^{-1}(\gamma_0)$.
  • The Arruda-Boyce model reduces to the Neo-Hookean model when $N_b\to\infty$.

  1. E.M. Arruda and M.C. Boyce, J. Mech. Phys. Solids 41, 389 (1993)

Trait Implementations§

Source§

impl<'a> Constitutive<'a> for ArrudaBoyce<'a>

Source§

fn new(parameters: Parameters<'a>) -> Self

Constructs and returns a new constitutive model.
Source§

fn jacobian( &self, deformation_gradient: &DeformationGradient, ) -> Result<Scalar, ConstitutiveError>

Calculates and returns the Jacobian.
Source§

impl<'a> Debug for ArrudaBoyce<'a>

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl<'a> Elastic<'a> for ArrudaBoyce<'a>

Source§

fn cauchy_stress( &self, deformation_gradient: &DeformationGradient, ) -> Result<CauchyStress, ConstitutiveError>

\boldsymbol{\sigma}(\mathbf{F}) = \frac{\mu\gamma_0\eta}{J\gamma\eta_0}\,{\mathbf{B}^*}' + \frac{\kappa}{2}\left(J - \frac{1}{J}\right)\mathbf{1}
Source§

fn cauchy_tangent_stiffness( &self, deformation_gradient: &DeformationGradient, ) -> Result<CauchyTangentStiffness, ConstitutiveError>

\begin{aligned}
\mathcal{T}_{ijkL}(\mathbf{F}) =
\,& \frac{\mu\gamma_0\eta}{J^{5/3}\gamma\eta_0}\left(\delta_{ik}F_{jL} + \delta_{jk}F_{iL} - \frac{2}{3}\,\delta_{ij}F_{kL}- \frac{5}{3} \, B_{ij}'F_{kL}^{-T} \right)
\\
&+ \frac{\mu\gamma_0\eta}{3J^{7/3}N_b\gamma^2\eta_0}\left(\frac{1}{\eta\mathcal{L}'(\eta)} - \frac{1}{\gamma}\right)B_{ij}'B_{km}'F_{mL}^{-T} + \frac{\kappa}{2} \left(J + \frac{1}{J}\right)\delta_{ij}F_{kL}^{-T}
\end{aligned}
Source§

fn first_piola_kirchhoff_stress( &self, deformation_gradient: &DeformationGradient, ) -> Result<FirstPiolaKirchhoffStress, ConstitutiveError>

Calculates and returns the first Piola-Kirchhoff stress. Read more
Source§

fn first_piola_kirchhoff_tangent_stiffness( &self, deformation_gradient: &DeformationGradient, ) -> Result<FirstPiolaKirchhoffTangentStiffness, ConstitutiveError>

Calculates and returns the tangent stiffness associated with the first Piola-Kirchhoff stress. Read more
Source§

fn second_piola_kirchhoff_stress( &self, deformation_gradient: &DeformationGradient, ) -> Result<SecondPiolaKirchhoffStress, ConstitutiveError>

Calculates and returns the second Piola-Kirchhoff stress. Read more
Source§

fn second_piola_kirchhoff_tangent_stiffness( &self, deformation_gradient: &DeformationGradient, ) -> Result<SecondPiolaKirchhoffTangentStiffness, ConstitutiveError>

Calculates and returns the tangent stiffness associated with the second Piola-Kirchhoff stress. Read more
Source§

fn solve( &self, applied_load: AppliedLoad, ) -> Result<(DeformationGradient, CauchyStress), ConstitutiveError>

Solve for the unknown components of the Cauchy stress and deformation gradient under an applied load.
Source§

impl<'a> Hyperelastic<'a> for ArrudaBoyce<'a>

Source§

fn helmholtz_free_energy_density( &self, deformation_gradient: &DeformationGradient, ) -> Result<Scalar, ConstitutiveError>

a(\mathbf{F}) = \frac{3\mu N_b\gamma_0}{\eta_0}\left[\gamma\eta - \gamma_0\eta_0 - \ln\left(\frac{\eta_0\sinh\eta}{\eta\sinh\eta_0}\right) \right] + \frac{\kappa}{2}\left[\frac{1}{2}\left(J^2 - 1\right) - \ln J\right]
Source§

impl<'a> Solid<'a> for ArrudaBoyce<'a>

Source§

fn bulk_modulus(&self) -> &Scalar

Returns the bulk modulus.
Source§

fn shear_modulus(&self) -> &Scalar

Returns the shear modulus.

Auto Trait Implementations§

§

impl<'a> Freeze for ArrudaBoyce<'a>

§

impl<'a> RefUnwindSafe for ArrudaBoyce<'a>

§

impl<'a> Send for ArrudaBoyce<'a>

§

impl<'a> Sync for ArrudaBoyce<'a>

§

impl<'a> Unpin for ArrudaBoyce<'a>

§

impl<'a> UnwindSafe for ArrudaBoyce<'a>

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<A, Y, U> OdeSolver<Y, U> for A
where A: Debug, Y: Tensor, U: TensorVec<Item = Y>,