pub struct Yeoh<P> { /* private fields */ }
Expand description
The Yeoh hyperelastic constitutive model.1
Parameters
- The bulk modulus $
\kappa
$. - The shear modulus $
\mu
$. - The extra moduli $
\mu_n
$ for $n=2\ldots N
$.
External variables
- The deformation gradient $
\mathbf{F}
$.
Internal variables
- None.
Notes
- The Yeoh model reduces to the Neo-Hookean model when $
\mu_n\to 0
$ for $n=2\ldots N
$.
O.H. Yeoh, Rubber Chem. Technol. 66, 754 (1993). ↩
Implementations§
Trait Implementations§
Source§impl<P> Constitutive<P> for Yeoh<P>where
P: Parameters,
impl<P> Constitutive<P> for Yeoh<P>where
P: Parameters,
Source§fn jacobian(
&self,
deformation_gradient: &DeformationGradient,
) -> Result<Scalar, ConstitutiveError>
fn jacobian( &self, deformation_gradient: &DeformationGradient, ) -> Result<Scalar, ConstitutiveError>
Calculates and returns the Jacobian.
Source§impl<P> Elastic for Yeoh<P>where
P: Parameters,
impl<P> Elastic for Yeoh<P>where
P: Parameters,
Source§fn cauchy_stress(
&self,
deformation_gradient: &DeformationGradient,
) -> Result<CauchyStress, ConstitutiveError>
fn cauchy_stress( &self, deformation_gradient: &DeformationGradient, ) -> Result<CauchyStress, ConstitutiveError>
\boldsymbol{\sigma}(\mathbf{F}) = \sum_{n=1}^N \frac{n\mu_n}{J}\left[\mathrm{tr}(\mathbf{B}^* ) - 3\right]^{n-1}\,{\mathbf{B}^*}' + \frac{\kappa}{2}\left(J - \frac{1}{J}\right)\mathbf{1}
Source§fn cauchy_tangent_stiffness(
&self,
deformation_gradient: &DeformationGradient,
) -> Result<CauchyTangentStiffness, ConstitutiveError>
fn cauchy_tangent_stiffness( &self, deformation_gradient: &DeformationGradient, ) -> Result<CauchyTangentStiffness, ConstitutiveError>
\begin{aligned}
\mathcal{T}_{ijkL}(\mathbf{F}) =
\,& \sum_{n=1}^N \frac{n\mu_n}{J^{5/3}}\left[\mathrm{tr}(\mathbf{B}^* ) - 3\right]^{n-1}\left(\delta_{ik}F_{jL} + \delta_{jk}F_{iL} - \frac{2}{3}\,\delta_{ij}F_{kL}- \frac{5}{3} \, B_{ij}'F_{kL}^{-T} \right)
\\
&+ \sum_{n=2}^N \frac{2n(n-1)\mu_n}{J^{7/3}}\left[\mathrm{tr}(\mathbf{B}^* ) - 3\right]^{n-2}B_{ij}'B_{km}'F_{mL}^{-T} + \frac{\kappa}{2} \left(J + \frac{1}{J}\right)\delta_{ij}F_{kL}^{-T}
\end{aligned}
Source§fn first_piola_kirchhoff_stress(
&self,
deformation_gradient: &DeformationGradient,
) -> Result<FirstPiolaKirchhoffStress, ConstitutiveError>
fn first_piola_kirchhoff_stress( &self, deformation_gradient: &DeformationGradient, ) -> Result<FirstPiolaKirchhoffStress, ConstitutiveError>
Calculates and returns the first Piola-Kirchhoff stress. Read more
Source§fn first_piola_kirchhoff_tangent_stiffness(
&self,
deformation_gradient: &DeformationGradient,
) -> Result<FirstPiolaKirchhoffTangentStiffness, ConstitutiveError>
fn first_piola_kirchhoff_tangent_stiffness( &self, deformation_gradient: &DeformationGradient, ) -> Result<FirstPiolaKirchhoffTangentStiffness, ConstitutiveError>
Calculates and returns the tangent stiffness associated with the first Piola-Kirchhoff stress. Read more
Source§fn second_piola_kirchhoff_stress(
&self,
deformation_gradient: &DeformationGradient,
) -> Result<SecondPiolaKirchhoffStress, ConstitutiveError>
fn second_piola_kirchhoff_stress( &self, deformation_gradient: &DeformationGradient, ) -> Result<SecondPiolaKirchhoffStress, ConstitutiveError>
Calculates and returns the second Piola-Kirchhoff stress. Read more
Source§fn second_piola_kirchhoff_tangent_stiffness(
&self,
deformation_gradient: &DeformationGradient,
) -> Result<SecondPiolaKirchhoffTangentStiffness, ConstitutiveError>
fn second_piola_kirchhoff_tangent_stiffness( &self, deformation_gradient: &DeformationGradient, ) -> Result<SecondPiolaKirchhoffTangentStiffness, ConstitutiveError>
Calculates and returns the tangent stiffness associated with the second Piola-Kirchhoff stress. Read more
Source§fn root(
&self,
applied_load: AppliedLoad,
) -> Result<DeformationGradient, OptimizeError>
fn root( &self, applied_load: AppliedLoad, ) -> Result<DeformationGradient, OptimizeError>
Solve for the unknown components of the deformation gradient under an applied load. Read more
Source§impl<P> Hyperelastic for Yeoh<P>where
P: Parameters,
impl<P> Hyperelastic for Yeoh<P>where
P: Parameters,
Source§fn helmholtz_free_energy_density(
&self,
deformation_gradient: &DeformationGradient,
) -> Result<Scalar, ConstitutiveError>
fn helmholtz_free_energy_density( &self, deformation_gradient: &DeformationGradient, ) -> Result<Scalar, ConstitutiveError>
a(\mathbf{F}) = \sum_{n=1}^N \frac{\mu_n}{2}\left[\mathrm{tr}(\mathbf{B}^* ) - 3\right]^n + \frac{\kappa}{2}\left[\frac{1}{2}\left(J^2 - 1\right) - \ln J\right]
Source§fn minimize(
&self,
applied_load: AppliedLoad,
) -> Result<DeformationGradient, OptimizeError>
fn minimize( &self, applied_load: AppliedLoad, ) -> Result<DeformationGradient, OptimizeError>
Solve for the unknown components of the deformation gradient under an applied load. Read more
Source§impl<P> Solid for Yeoh<P>where
P: Parameters,
impl<P> Solid for Yeoh<P>where
P: Parameters,
Source§fn bulk_modulus(&self) -> &Scalar
fn bulk_modulus(&self) -> &Scalar
Returns the bulk modulus.
Source§fn shear_modulus(&self) -> &Scalar
fn shear_modulus(&self) -> &Scalar
Returns the shear modulus.
Auto Trait Implementations§
impl<P> Freeze for Yeoh<P>where
P: Freeze,
impl<P> RefUnwindSafe for Yeoh<P>where
P: RefUnwindSafe,
impl<P> Send for Yeoh<P>where
P: Send,
impl<P> Sync for Yeoh<P>where
P: Sync,
impl<P> Unpin for Yeoh<P>where
P: Unpin,
impl<P> UnwindSafe for Yeoh<P>where
P: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more